polymer surfaces
Recently Published Documents


TOTAL DOCUMENTS

1760
(FIVE YEARS 142)

H-INDEX

93
(FIVE YEARS 6)

2022 ◽  
Vol 65 (1) ◽  
pp. 10-14
Author(s):  
Debabrata PALAI ◽  
Shunta CHIKAMI ◽  
Shoichi MAEDA ◽  
Hiroyuki TAHARA ◽  
Tomohiro HAYASHI
Keyword(s):  

2022 ◽  
pp. 101735
Author(s):  
Andrey Afanasiev ◽  
Alexander Pikulin ◽  
Igor Ilyakov ◽  
Boris Shishkin ◽  
Nikita Bityurin

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 84
Author(s):  
Cristina Cejudo Bastante ◽  
Marlene J. Cran ◽  
Lourdes Casas Cardoso ◽  
Casimiro Mantell Serrano ◽  
Stephen W. Bigger

A supercritical solvent impregnation (SSI) technique was employed to incorporate, by batch- and semicontinuous-modes, bioactive olive leaf extract (OLE) into a food-grade multilayer polyethylene terephthalate/polypropylene (PET/PP) film for active food packaging applications. The inclusion of OLE in the polymer surfaces significantly modified the colour properties of the film. A correlation of 87.06% between the CIELAB colour parameters and the amount of the OLE impregnated in the film was obtained which suggests that colour determination can be used as a rapid, non-destructive technique to estimate the OLE loading in the impregnated matrices. The UV barrier and water permeability properties of the films were not significantly modified by the incorporation of OLE. The migration of OLE into a 50% (v/v) ethanol food simulant demonstrated faster release of OLE from the PP surface than from the PET surface which may be due to the different interactions between OLE and each polymer.


2021 ◽  
pp. 139-174
Author(s):  
Yuliia Onyshchenko ◽  
Ke Vin Chan ◽  
Nathalie De Geyter ◽  
Rino Morent

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4023
Author(s):  
Alžbeta Kuižová ◽  
Anna Kuzminova ◽  
Ondřej Kylián ◽  
Eva Kočišová

Raman spectroscopy is one of the most used biodetection techniques. However, its usability is hampered in the case of low concentrated substances because of the weak intensity of the Raman signal. To overcome this limitation, the use of drop coating deposition Raman spectroscopy (DCDRS), in which the liquid samples are allowed to dry into well-defined patterns where the non-volatile solutes are highly concentrated, is appropriate. This significantly improves the Raman sensitivity when compared to the conventional Raman signal from solution/suspension. As DCDRS performance strongly depends on the wetting properties of substrates, we demonstrate here that the smooth hydrophobic plasma polymerized fluorocarbon films prepared by magnetron sputtering (contact angle 108°) are well-suited for the DCDRS detection of liposomes. Furthermore, it was proved that even better improvement of the Raman signal might be achieved if the plasma polymer surfaces are roughened. In this case, 100% higher intensities of Raman signal are observed in comparison with smooth fluorocarbon films. As it is shown, this effect, which has no influence on the profile of Raman spectra, is connected with the increased hydrophobicity of nanostructured fluorocarbon films. This results in the formation of dried liposomal deposits with smaller diameters and higher preconcentration of liposomes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Federico A. Bertolini ◽  
Michelina Soccio ◽  
Simone Weinberger ◽  
Giulia Guidotti ◽  
Massimo Gazzano ◽  
...  

In the past 20 years, scientific research focused on the identification of valid alternatives to materials of fossil origin, in particular, related to biobased polymers. Recently, the efforts led to the synthesis of thiophene-based polymers (TBPs), a new class of polyesters based on 2,5-thiophenedicarboxylic acid (TPCA) that can be industrially produced using biomass-derived molecules. In this study, TBPs were synthesized using diols with different chain length (from C4 to C6) leading to poly(butylene 2,5-thiophenedicarboxylate) (PBTF), poly(pentamethylene 2,5-thiophenedicarboxylate) (PPeTF), and poly(hexamethylene 2,5-thiophenedicarboxylate) (PHTF), respectively, that were processed to thin films. To investigate enzymatic hydrolysis of these polymer films, cutinase 1 (Thc_cut1) and cutinase 2 (Thc_cut2) from Thermobifida cellulosilytica were recombinantly expressed in the host E. coli and purified. After 72 h of incubation at 65°C with 5 µM Thc_cut1, weight loss and HPLC analysis indicated 9, 100, and 80% degradation of PBTF, PPeTF, and PHTG with a concomitant release of 0.12, 2.70, and 0.67 mM of TPCA. The SEM analysis showed that tiny holes were formed on the surface of the films and after 72 h PPeTF was completely degraded. The LC-TOF/MS analysis indicated that Thc_cut2 in particular released various oligomers from the polymer during the reaction. In addition, the FTIR analysis showed the formation of novel acid and hydroxyl groups on the polymer surfaces. The results showed that the two used thermostable cutinases are promising biocatalysts for the environmentally friendly degradation of TPCA-based polyesters, in view of a possible sustainable recycling of plastic waste through resynthesis processes.


Author(s):  
Giorgio De Luca ◽  
Francesco Petrosino ◽  
Javier Luque Di Salvo ◽  
Sudip Chakraborty ◽  
Stefano Curcio

Sign in / Sign up

Export Citation Format

Share Document