topoisomerase 1
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 88)

H-INDEX

28
(FIVE YEARS 6)

2022 ◽  
Vol 23 (2) ◽  
pp. 915
Author(s):  
Sofia Gabellone ◽  
Davide Piccinino ◽  
Silvia Filippi ◽  
Tiziana Castrignanò ◽  
Claudio Zippilli ◽  
...  

We report here the synthesis of novel thymine biomimetic photo-adducts bearing an alkane spacer between nucleobases and characterized by antimelanoma activity against two mutated cancer cell lines overexpressing human Topoisomerase 1 (TOP1), namely SKMEL28 and RPMI7951. Among them, Dewar Valence photo-adducts showed a selectivity index higher than the corresponding pyrimidine-(6-4)-pyrimidone and cyclobutane counterpart and were characterized by the highest affinity towards TOP1/DNA complex as evaluated by molecular docking analysis. The antimelanoma activity of novel photo-adducts was retained after loading into UV photo-protective lignin nanoparticles as stabilizing agent and efficient drug delivery system. Overall, these results support a combined antimelanoma and UV sunscreen strategy involving the use of photo-protective lignin nanoparticles for the controlled release of thymine dimers on the skin followed by their sacrificial transformation into photo-adducts and successive inhibition of melanoma and alert of cellular UV machinery repair pathways.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 1006-1006
Author(s):  
Tavia Roache

Abstract Mono-ribonucleotides are building blocks for polynucleotide RNA chains (e.g., messenger RNA), but if mis-incorporated into duplex DNA can cause mutagenesis and chromosomal instability. During DNA synthesis by Pol γ, remnants of unremoved RNA primers contribute to elevated mono-ribonucleotide triphosphates resulting in nucleotide pool imbalance, ultimately favoring mis-incorporated ribonucleotides during replication. Moreover, although polymerases generally replicate DNA with high fidelity, the steric gate occasionally allows a mis-incorporated ribonucleotide. Thus, a mono-ribonucleotide is one of the most abundant lesions in genomic DNA of eukaryotes. If unremoved from double-stranded DNA, the ribonucleotide exerts negative effects on replication, transcription, and genomic maintenance, with lasting effects on cellular homeostasis. Even a single ribonucleotide in telomeric DNA comprises shelterin binding and telomere capping causing vulnerability to spontaneous hydrolysis which potentiates telomere shortening. Consistent with this, a ribonucleotide positioned in double-helical DNA alters its structure by torsinally distorting the sugar-phosphate backbone. Fortunately, cellular response and repair pathways exist to help cells cope with mis-incorporated mono-ribonucleotides. The Ribonucleotide Excision Repair (RER) or a Topoisomerase 1 (Top1)-mediated pathway remove embedded ribonucleotides. For RER, RNase H2 incises 5’ of a mono-ribonucleotide, creating an access point for its removal. If cells are deficient in RNase H2, Top1 initiates removal of the ribonucleotide. However, Top1 is less accurate than RNase H2, which can lead to mutagenesis. Studying the mechanisms in which ribonucleotides are incorporated into DNA or further metabolized should provide insight to their negative consequences for chromosomal integrity, cancer, and auto-immune disease attributed to a genetic deficiency of RNase H2.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7294
Author(s):  
Giuliana Pavone ◽  
Lucia Motta ◽  
Federica Martorana ◽  
Gianmarco Motta ◽  
Paolo Vigneri

Human trophoblast cell-surface antigen-2 (Trop-2) is a membrane glycoprotein involved in cell proliferation and motility, frequently overexpressed in epithelial tumors. Thus, it represents an attractive target for anticancer therapies. Sacituzumab govitecan (SG) is a third-generation antibody-drug conjugate, consisting of an anti-Trop-2 monoclonal antibody (hRS7), a hydrolyzable linker, and a cytotoxin (SN38), which inhibits topoisomerase 1. Specific pharmacological features, such as the high antibody to payload ratio, the ultra-toxic nature of SN38, and the capacity to kill surrounding tumor cells (the bystander effect), make SG a very promising drug for cancer treatment. Indeed, unprecedented results have been observed with SG in patients with heavily pretreated advanced triple-negative breast cancer and urothelial carcinomas, and the drug has already received approval for these indications. These results are coupled with a manageable toxicity profile, with neutropenia and diarrhea as the most frequent adverse events, mainly of grades 1–2. While several trials are exploring SG activity in different tumor types and settings, potential biomarkers of response are under investigation. Among these, Trop-2 overexpression and the presence of BRCA1/2 mutations seem to be the most promising. We review the available literature concerning SG, with a focus on its toxicity spectrum and possible biomarkers of its response.


2021 ◽  
Vol 15 (1) ◽  
pp. 229-235
Author(s):  
Doaa Ghorab ◽  
Ahmed Helaly ◽  
Amani E. Badawi

Introduction: Pterygium is a common ophthalmic problem in the Middle East where exposures to dust and sun rays are risk factors. The condition is more prevalent in middle-aged males and can be considered as an aging process. The aim of this study is to test both the degenerative and the proliferative components of Pterygium by both reduced glutathione and topoisomerase one activity. Methods: The study applied immunohistochemistry staining for both reduced glutathione and topoisomerase 1. Results: The samples expressed positive glutathione staining in most primary Pterygium conditions and all secondary Pterygium. On the other hand, the topoisomerase 1 immunohistochemistry expressed focal activity in secondary conditions suggesting a progenitor cell role in the pathogenesis of Pterygium in conjunction with oxidative stress. Conclusion: Pterygium represents dual pathology with a proliferative component and a degenerative one that needs further studies. It is possible to use combination immunohistochemistry markers to predict the prognosis of Pterygium behavior.


2021 ◽  
Author(s):  
Anika Wiegard ◽  
Vladislav Kuzin ◽  
Donald P. Cameron ◽  
Jan Grosser ◽  
Michele Ceribelli ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (21) ◽  
pp. 11336
Author(s):  
Nadezhda S. Dyrkheeva ◽  
Aleksandr S. Filimonov ◽  
Olga A. Luzina ◽  
Kristina A. Orlova ◽  
Irina A. Chernyshova ◽  
...  

Tyrosyl-DNA phosphodiesterase 1 (TDP1) catalyzes the cleavage of the phosphodiester bond between the tyrosine residue of topoisomerase 1 (TOP1) and the 3′ phosphate of DNA in the single-strand break generated by TOP1. TDP1 promotes the cleavage of the stable DNA–TOP1 complexes with the TOP1 inhibitor topotecan, which is a clinically used anticancer drug. This article reports the synthesis and study of usnic acid thioether and sulfoxide derivatives that efficiently suppress TDP1 activity, with IC50 values in the 1.4–25.2 μM range. The structure of the heterocyclic substituent introduced into the dibenzofuran core affects the TDP1 inhibitory efficiency of the compounds. A five-membered heterocyclic fragment was shown to be most pharmacophoric among the others. Sulfoxide derivatives were less cytotoxic than their thioester analogs. We observed an uncompetitive type of inhibition for the four most effective inhibitors of TDP1. The anticancer effect of TOP1 inhibitors can be enhanced by the simultaneous inhibition of PARP1, TDP1, and TDP2. Some of the compounds inhibited not only TDP1 but also TDP2 and/or PARP1, but at significantly higher concentration ranges than TDP1. Leader compound 10a showed promising synergy on HeLa cells in conjunction with the TOP1 inhibitor topotecan.


2021 ◽  
Author(s):  
Keying Zhu ◽  
Yang Wang ◽  
Heela Sarlus ◽  
Keyi Geng ◽  
Erik Nutma ◽  
...  

AbstractTargeting myeloid cells, especially microglia, for the treatment of neuroinflammatory diseases such as multiple sclerosis (MS), is underappreciated. Here, we screened a library of compounds and identified the topoisomerase 1 (TOP1) inhibitor camptothecin (CPT) as a promising drug candidate for microglial modulation. CPT and its FDA-approved analog topotecan (TPT) inhibited inflammatory responses in microglia and macrophages, and ameliorated neuroinflammation in mice. Transcriptomic analysis of sorted microglia revealed an altered transcriptional phenotype following TPT treatment, with Ikzf1 identified as a potential target. Importantly, TOP1 expression was found elevated in several neuroinflammatory conditions, including human MS brains. To achieve targeted delivery to myeloid cells we designed a nanosystem using DNA origami and loaded TPT into it (TopoGami). TopoGami also significantly suppressed the inflammatory response in microglia and mitigated disease progression in MS-like mice. Our findings suggest that TOP1 inhibition represents a therapeutic strategy for neuroinflammatory diseases, and the proposed nanosystem may foster future research and drug development with a demand to target myeloid cells.


CHEST Journal ◽  
2021 ◽  
Vol 160 (4) ◽  
pp. A1254
Author(s):  
Liudmila Garzanova ◽  
Lidia Ananyeva ◽  
Olga Koneva ◽  
Oxana Desinova ◽  
Olga Ovsynnikova ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jing Zhang ◽  
Suhong Xie ◽  
Lei Zhou ◽  
Xiaoyu Tang ◽  
Xiaolin Guan ◽  
...  

AbstractSerous ovarian cancer (SOC) is the most common women cancer and the leading cause of cancer-related mortality among the gynaecological malignancies. Although effective chemotherapeutics combined with surgery are developed for the treatment, the five-year survival rate is unsatisfactory due to chemoresistance. To overcome this shortcoming of chemotherapy, we established taxol and carboplatin resistant SOC cell lines for the understandings of the molecular and cellular mechanisms of chemoresistance. Here, we found that these chemoresistant cell lines showed less viability and proliferation, due to more cells arrested at G0/G1 phase. Glutathione-S-transferases-theta1 (GSTT1) was significantly upregulated in these chemoresistant cells, along with other chemoresistant genes. Meanwhile, GSTT1 expression was also significantly upregulated in the SOC patient tissues after taxol treatment, indicating this upregulation was physiologically relevant to chemotherapy. Further, suppression of GSTT1 expression by shRNA in SOC cell lines led to more sensitivity to drug treatment, through increasing divided cells and promoting cell death. Moreover, the expression of DNA topoisomerase 1 (Topo I) was in synergy with that of GSTT1 in the chemoresistant cells, and GSTT1 can bind to Topo I in vitro, which suggested GSTT1 could function through DNA repair mechanism during chemoresistance. In summary, our data imply that GSTT1 may be a potential biomarker or indicator of drug resistance in serous ovarian cancer.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1255
Author(s):  
Kamilla Vandsø Petersen ◽  
Asier Selas ◽  
Kirstine Mejlstrup Hymøller ◽  
Karol Mizielinski ◽  
Maria Thorsager ◽  
...  

Background: Eukaryotic topoisomerase 1 is a potential target of anti-parasitic and anti-cancer drugs. Parasites require topoisomerase 1 activity for survival and, consequently, compounds that inhibit topoisomerase 1 activity may be of interest. All effective topoisomerase 1 drugs with anti-cancer activity act by inhibiting the ligation reaction of the enzyme. Screening for topoisomerase 1 targeting drugs, therefore, should involve the possibility of dissecting which step of topoisomerase 1 activity is affected. Methods: Here we present a novel DNA-based assay that allows for screening of the effect of small-molecule compounds targeting the binding/cleavage or the ligation steps of topoisomerase 1 catalysis. This novel assay is based on the detection of a rolling circle amplification product generated from a DNA circle resulting from topoisomerase 1 activity. Results: We show that the binding/cleavage and ligation reactions of topoisomerase 1 can be investigated separately in the presented assay termed REEAD (C|L) and demonstrate that the assay can be used to investigate, which of the individual steps of topoisomerase 1 catalysis are affected by small-molecule compounds. The assay is gel-free and the results can be detected by a simple colorimetric readout method using silver-on-gold precipitation rendering large equipment unnecessary. Conclusion: REEAD (C|L) allows for easy and quantitative investigations of topoisomerase 1 targeting compounds and can be performed in non-specialized laboratories.


Sign in / Sign up

Export Citation Format

Share Document