aroma volatiles
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 19)

H-INDEX

32
(FIVE YEARS 1)

2022 ◽  
Vol 25 (1) ◽  
pp. 53-64
Author(s):  
Lulu Zhang ◽  
Houzheng Wang ◽  
Xingyue Tang ◽  
Shunzhong Lu ◽  
Yuying Tan ◽  
...  
Keyword(s):  

Beverages ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Nils Rettberg ◽  
Scott Lafontaine ◽  
Christian Schubert ◽  
Johanna Dennenlöhr ◽  
Laura Knoke ◽  
...  

The sensory, volatile, and physiochemical profiles of nineteen commercial non-alcoholic pilsner-style beers produced by different production techniques were analyzed and compared with a dry-hopped non-alcoholic IPA. NABs made only with either physical dealcoholization or restricted fermentations differed significantly in chemistry and flavor. Generally, NABs produced by restricted fermentations were the most worty, thick, and sweet, whereas NABs that were physically dealcoholized had the lowest taste/aroma intensities and were the sourest, most thin, and least sweet. Interestingly, the method of dealcoholization had a minor impact on the flavor profile. The use of maltose intolerant yeast as well as the implementation of combined treatments, such as blending dealcoholized beer with beer containing alcohol, were the techniques found to produce NABs with more harmonious and multifaceted chemical and flavor profiles. NABs with increased hop aroma volatiles were the most harmonious, particularly highlighted by the NA IPA reference. Even though dry-hopped character might be atypical for pilsner-style beer, dry-hopping appears as a simple application to produce NABs with more harmonious flavor.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaojie Liu ◽  
Nini Hao ◽  
Ruifang Feng ◽  
Zhipeng Meng ◽  
Yanan Li ◽  
...  

Abstract Background Aroma is one the most crucial inherent quality attributes of fruit. ‘Ruixue’ apples were selected from a cross between ‘Pink Lady’ and ‘Fuji’, a later ripening yellow new cultivar. However, there is little known about the content and composition of aroma compounds in ‘Ruixue’ apples or the genetic characters of ‘Ruixue’ and its parents. In addition, the metabolic pathways for biosynthesis of aroma volatiles and aroma-related genes remain poorly understood. Results Volatile aroma compounds were putatively identified using gas chromatography-mass spectrometry (GC–MS). Our results show that the profile of volatile compounds changes with ripening. Aldehydes were the dominant volatile compounds in early fruit development, with alcohols and esters increasing dramatically during maturation. On the basis of a heatmap dendrogram, these aroma compounds clustered into seven groups. In ripe fruit, esters and terpenoids were the main aroma volatiles in ripening fruit of ‘Pink Lady’ and ‘Fuji’ apples, and they included butyl 2-methylbutanoate; propanoic acid, hexyl ester; propanoic acid, hexyl ester; hexanoic acid, hexyl ester; acetic acid, hexyl ester and (Z, E)-α-farnesene. Interestingly, aldehydes and terpenoids were the dominant volatile aroma compounds in ripening fruit of ‘Ruixue’, and they mainly included hexanal; 2-hexenal; octanal; (E)-2-octenal; nonanal and (Z, E)-α-farnesene. By comparing the transcriptome profiles of ‘Ruixue’ and its parents fruits during development, we identified a large number of aroma-related genes related to the fatty acid, isoleucine and sesquiterpenoid metabolism pathways and transcription factors that may volatile regulate biosynthesis. Conclusions Our initial study facilitates a better understanding of the volatile compounds that affect fruit flavour as well as the mechanisms underlying differences in flavour between ‘Ruixue’ and its parents.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 81
Author(s):  
Yunduan Li ◽  
Yuanyuan Zhang ◽  
Xincheng Liu ◽  
Yuwei Xiao ◽  
Zuying Zhang ◽  
...  

Volatile compounds principally contribute to flavor of strawberry (Fragaria × ananassa) fruit. Besides to genetics, cultivation conditions play an important role in fruit volatile formation. Compared to soil culture as control, effects of substrate culture on volatile compounds of two strawberry cultivars (‘Amaou’ and ‘Yuexin’) were investigated. GC-MS analysis revealed significant difference in volatile contents of ‘Amaou’ strawberry caused by substrate culture. No significant effect was observed for cultivar ‘Yuexin’. For ‘Amaou’ strawberry from soil culture produced higher volatile contents compared with substrate culture. This difference is contributed by high contents of esters, lactones, ketones, aldehydes, terpenes, hydrocarbons, acids, furans and phenols in ‘Amaou’ strawberry fruit from soil culture. Furanones, beta-linalool, trans-Nerolidol and esters are major contributor to strawberry aroma, whose contents are higher in soil culture planted fruit when compared to substrate culture. Moreover, strawberry fruit from soil culture had higher transcripts related to volatile biosynthesis were observed, including FaQR, FaOMT, FaNES1, FaSAAT and FaAAT2.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 146
Author(s):  
Dongheon Lee ◽  
Hyun Jung Lee ◽  
Ji Won Yoon ◽  
Minsu Kim ◽  
Cheorun Jo

This study investigated the effects of different aging methods on the changes in the concentrations of aroma volatiles of beef. One half (n = 15) of the beef strip loins were dry-aged, and the other half were wet-aged, and both aging processes continued for 28 days. The aroma volatiles from dry- and wet-aged samples were analyzed at seven-day intervals (n = 3 for each aging period). As the aging period increased, dry-aged beef showed higher concentrations of volatile compounds than those in wet-aged beef (p < 0.05). Most changes in the concentrations of aroma volatiles of dry-aged beef were associated with propanal, 2-methylbutanal, 2-methylpropanal, 1-butanamine, trimethylamine, 2-methyl-2-propanethiol, and ethyl propanoate, which were mainly produced by lipid oxidation and/or microbial activity (e.g., proteolysis and lipolysis) during the dry aging period. Therefore, we suggest that the differences in aroma between dry- and wet-aged beef could result from increased lipid oxidation and microbial activity in dry-aged beef possibly owing to its ambient exposure to oxygen.


2020 ◽  
Author(s):  
Xiaojie Liu ◽  
Nini Hao ◽  
Ruifang Feng ◽  
Zhipeng Meng ◽  
Yanan Li ◽  
...  

Abstract Background: Aroma is one the most crucial inherent quality attributes of fruit. ‘Ruixue’ apples were selected from a cross between ‘Pink Lady’ and ‘Fuji’, a later ripening yellow new cultivar. However, there is little known about the content and composition of aroma compounds in ‘Ruixue’ apples or the genetic characters of ‘Ruixue’ and its parents. In addition, the metabolic pathways for biosynthesis of aroma volatiles and aroma-related genes remain poorly understood.Results: Volatile aroma compounds were identified using gas chromatography-mass spectrometry (GC-MS). Our results show that the aroma profile of volatile compounds changes with ripening. Aldehydes were the dominant volatile compounds in early fruit development, with alcohols and esters increasing dramatically during maturation. In ripe fruit, esters and terpenoids were the main aroma volatiles in ripening fruit of ‘Pink Lady’ and ‘Fuji’ apples, and they included butyl 2-methylbutanoate, propanoic acid, hexyl ester, propanoic acid, hexyl ester, hexanoic acid, hexyl ester, acetic acid, hexyl ester and (Z, E)-α-farnesene. Interestingly, aldehydes and terpenoids were the dominant volatile aroma compounds in ripening fruit of ‘Ruixue’, and they mainly included 2-hexenal, 2-hexenal, octanal, (E)-2-octenal, nonanal and (Z, E)-α-farnesene. By comparing the transcriptome profiles of ‘Ruixue’ and its parents fruits during development, we identified a large number of aroma-related genes related to the fatty acid, isoleucine and sesquiterpenoid metabolism pathways and transcription factors that may regulate aroma biosynthesis. Conclusions: Our initial study facilitates a better understanding of the volatile aroma compounds that affect fruit flavour as well as the mechanisms underlying differences in flavour between ‘Ruixue’ and its parents.


Sign in / Sign up

Export Citation Format

Share Document