polystyrene beads
Recently Published Documents


TOTAL DOCUMENTS

443
(FIVE YEARS 59)

H-INDEX

39
(FIVE YEARS 4)

2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Holger Götz ◽  
Angel Santarossa ◽  
Achim Sack ◽  
Thorsten Pöschel ◽  
Patric Müller

AbstractGranular jamming has been identified as a fundamental mechanism for the operation of robotic grippers. In this work, we show, that soft particles like expanded polystyrene beads lead to significantly larger gripping forces in comparison to rigid particles. In contradiction to naive expectation, the combination of jamming and elasticity gives rise to very different properties of the jammed phase, compared to hard-particle systems. This may be of interest also beyond the application in robotic grippers.


2021 ◽  
pp. 100030
Author(s):  
Zehavit Shapira ◽  
Nurit Degani-Katzav ◽  
Shimon Yudovich ◽  
Asaf Grupi ◽  
Shimon Weiss

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4957
Author(s):  
Naqib Fuad Abd Rashid ◽  
Revathy Deivasigamani ◽  
M. F. Mohd Razip Wee ◽  
Azrul Azlan Hamzah ◽  
Muhamad Ramdzan Buyong

We present the integration of a flow focusing microfluidic device in a dielectrophoretic application that based on a tapered aluminum microelectrode array (TAMA). The characterization and optimization method of microfluidic geometry performs the hydrodynamic flow focusing on the channel. The sample fluids are hydrodynamically focused into the region of interest (ROI) where the dielectrophoresis force (FDEP) is dominant. The device geometry is designed using 3D CAD software and fabricated using the micro-milling process combined with soft lithography using PDMS. The flow simulation is achieved using COMSOL Multiphysics 5.5 to study the effect of the flow rate ratio between the sample fluids (Q1) and the sheath fluids (Q2) toward the width of flow focusing. Five different flow rate ratios (Q1/Q2) are recorded in this experiment, which are 0.2, 0.4, 0.6, 0.8 and 1.0. The width of flow focusing is increased linearly with the flow rate ratio (Q1/Q2) for both the simulation and the experiment. At the highest flow rate ratio (Q1/Q2 = 1), the width of flow focusing is obtained at 638.66 µm and at the lowest flow rate ratio (Q1/Q2 = 0.2), the width of flow focusing is obtained at 226.03 µm. As a result, the flow focusing effect is able to reduce the dispersion of the particles in the microelectrode from 2000 µm to 226.03 µm toward the ROI. The significance of flow focusing on the separation of particles is studied using 10 and 1 µm polystyrene beads by applying a non-uniform electrical field to the TAMA at 10 VPP, 150 kHz. Ultimately, we are able to manipulate the trajectories of two different types of particles in the channel. For further validation, the focusing of 3.2 µm polystyrene beads within the dominant FDEP results in an enhanced manipulation efficiency from 20% to 80% in the ROI.


Author(s):  
Rohan Deshmukh ◽  
Saivignesh Iyer ◽  
Prathamesh Bhangare ◽  
Muntazir Bhat ◽  
Shantanu Upadhyay

2021 ◽  
Vol 1033 ◽  
pp. 163-171
Author(s):  
Alexandra Reto ◽  
Renzo Sanabria ◽  
José Rodriguez ◽  
Alexandra Hinostroza

The precast concrete elements in the construction of buildings are increasingly used due to their better quality control, constructive speed, reduction of the number of workers and less waste of resources compared to conventional construction; for wall applications, to these advantages, the design to ensure thermal comfort requires the improvement of the low thermal insulation of conventional concrete panels. The use of materials with lower thermal conductivity such as Expanded PolyStyrene Beads (EPSB) in lightweight concrete for the construction of precast panels in housing, contributes to improve thermal insulation and the saving operational energy during its operation phase, because the aggregate has a small size, low density and thermal conductivity; applied in higher volumes in concrete, reduces indoor heat loss in cold climates and indoor heat gain in warm climates in housing. The purpose of this research is to study the behavior of lightweight concrete with EPSB for 16%, 26% and 36% addition and evaluate the air-dry density, compressive strength, thermal conductivity, relationship between air-dry density with compressive strength and thermal conductivity. The results indicate that the higher the percentage of EPSB the air-dry density, compressive strength and thermal conductivity decrease; the relationships between air-dry density with compressive strength and thermal conductivity follow a linear trend and are similar.


Sign in / Sign up

Export Citation Format

Share Document