distance runners
Recently Published Documents


TOTAL DOCUMENTS

1455
(FIVE YEARS 285)

H-INDEX

61
(FIVE YEARS 6)

2022 ◽  
Vol 3 ◽  
Author(s):  
Zoe Y. S. Chan ◽  
Rhys Peeters ◽  
Gladys Cheing ◽  
Reed Ferber ◽  
Roy T. H. Cheung

The COVID-19 pandemic caused widespread disruption to many individuals' lifestyles. Social distancing restrictions implemented during this global pandemic may bring potential impact on physical activity habits of the general population. However, running is one of the most popular forms of physical activity worldwide and one in which it could be maintained even during most COVID-19 restrictions. We aimed to determine the impact of COVID-19 restrictions on runners' training habits through analyzing the training records obtained from their GPS enabled wearable trackers. Retrospective and prospective data were collected from an online database (https://wetrac.ucalgary.ca). Runners' training habits, including frequency, intensity and duration of training, weekly mileage and running locations were analyzed and compared 9 months before and after the start of COVID-19 restrictions in March 2020. We found that runners ran 3 km per week more (p = 0.05, Cohen's d = 0.12) after the start of COVID-19 restrictions, and added 0.3 training sessions per week (p = 0.03, Cohen's d = 0.14). Moreover, runners ran an additional 0.4 sessions outdoors (p < 0.01, Cohen's d = 0.21) but there was no significant change in the intensity or duration of training sessions. Our findings suggested that runners adopted slightly different training regimen as a result of COVID-19 restrictions. Our results described the collective changes, irrespective of differences in response measures adopted by various countries or cities during the COVID-19 pandemic.


2022 ◽  
Vol 12 ◽  
Author(s):  
Esthevan Machado ◽  
Fábio Juner Lanferdini ◽  
Edson Soares da Silva ◽  
Jeam Marcel Geremia ◽  
Francesca Chaida Sonda ◽  
...  

Purpose: This study aimed to determine whether triceps surae’s muscle architecture and Achilles tendon parameters are related to running metabolic cost (C) in trained long-distance runners.Methods: Seventeen trained male recreational long-distance runners (mean age = 34 years) participated in this study. C was measured during submaximal steady-state running (5 min) at 12 and 16 km h–1 on a treadmill. Ultrasound was used to determine the gastrocnemius medialis (GM), gastrocnemius lateralis (GL), and soleus (SO) muscle architecture, including fascicle length (FL) and pennation angle (PA), and the Achilles tendon cross-sectional area (CSA), resting length and elongation as a function of plantar flexion torque during maximal voluntary plantar flexion. Achilles tendon mechanical (force, elongation, and stiffness) and material (stress, strain, and Young’s modulus) properties were determined. Stepwise multiple linear regressions were used to determine the relationship between independent variables (tendon resting length, CSA, force, elongation, stiffness, stress, strain, Young’s modulus, and FL and PA of triceps surae muscles) and C (J kg–1m–1) at 12 and 16 km h–1.Results: SO PA and Achilles tendon CSA were negatively associated with C (r2 = 0.69; p < 0.001) at 12 km h–1, whereas SO PA was negatively and Achilles tendon stress was positively associated with C (r2 = 0.63; p = 0.001) at 16 km h–1, respectively. Our results presented a small power, and the multiple linear regression’s cause-effect relation was limited due to the low sample size.Conclusion: For a given muscle length, greater SO PA, probably related to short muscle fibers and to a large physiological cross-sectional area, may be beneficial to C. Larger Achilles tendon CSA may determine a better force distribution per tendon area, thereby reducing tendon stress and C at submaximal speeds (12 and 16 km h–1). Furthermore, Achilles tendon morphological and mechanical properties (CSA, stress, and Young’s modulus) and triceps surae muscle architecture (GM PA, GM FL, SO PA, and SO FL) presented large correlations with C.


2022 ◽  
Vol 12 (01) ◽  
pp. 1-10
Author(s):  
Hossam Abdel Aleem Shaheen ◽  
Manal Ahmed Mohamed ◽  
Fatma Hasan Abdel Basset ◽  
Mostafa Hamed Rashed ◽  
Neethu Betty Theruvan ◽  
...  

Author(s):  
Iwona Sulowska-Daszyk ◽  
Agnieszka Skiba

During long-distance running, athletes are exposed to repetitive loads. Myofascial structures are liable to long-term work, which may cause cumulating tension within them. The aim of this study was to evaluate the acute effect of self-myofascial release on muscle flexibility in long-distance runners. The study comprised 62 long-distance, recreationally running participants between the age of 20 and 45 years. The runners were randomly divided into two groups: Group 1 (n = 32), in which subjects applied the self-myofascial release technique between baseline and the second measurement of muscle flexibility, and Group 2 (n = 30), without any intervention. The self-myofascial release technique was performed according to standardized foam rolling. Assessment of muscle flexibility was conducted according to Chaitow’s proposal. After application of the self-myofascial release technique, higher values were noted for the measurements of the following muscles: piriformis, tensor fasciae latae muscles and adductor muscles. Within the iliopsoas and rectus femoris muscles, lower values were observed in the second measurement. These changes were statistically significant (p < 0.05) within the majority of muscles. All these outcomes indicate improvement related to larger muscle flexibility and also, an increase in range of motion. In the control group (Group 2), significant improvement was observed only in measurements for the iliopsoas muscles. The single application of self-myofascial release techniques with foam rollers may significantly improve muscle flexibility in long-distance runners. Based on these results, the authors recommend the self-myofascial release technique with foam rollers be incorporated in the daily training routine of long-distance runners, as well as athletes of other sport disciplines.


2021 ◽  
Vol 39 (3) ◽  
pp. 85-92
Author(s):  
Sung-Hoon Hur ◽  
Kyung-Jun An ◽  
Yoon-Mi Kim ◽  
Yeung-Woo Kwon ◽  
Jong-Sam Lee

Author(s):  
Dileep Tirkey ◽  
Shabir Kumar Anant ◽  
Reeta Venugopal

Objective: To find out the effect of 15 days of beetroot juice (BRJ) supplementation on 10 km time trial performance in trained distance runners of University level.Methods: Thirty trained athletes,15 males age = 26.3 y ± 1.52, height 170.5 ± 0.2 cm, and 15 females, age = 25.2 y ± 1.30, height 157.8 ± 0.3 cm were selected for the present study. Two experimental and two control groups were made consisting of males and females separately. The first group of male and female (Experimental Group) consumed the BRJdaily 250 ml/dayand the second group (Control Group) did not consume beetroot juice. Both groups underwent a regular athletics training programme. All the subjects were tested on Ten Km Time Trial (TT)performance before supplementation of BRJ and after 15 days of supplementation of BRJ. Results: The significant effect of BRJ supplementationwas observed (p < 0.05) between pre and post measures of 10 km TT in experimental group. BRJ supplementation significantly improved performance in 10 km TT in both groups (respectively male; P< 0.006; F=11.09, ES = .480, female; P < 0.000, F=40.45, ES = .771.Conclusion: Consumption of BRJ250 ml/day in improved 10 km time trial performance in traineddistance runners.


2021 ◽  
Vol 41 (3) ◽  
Author(s):  
Rannveig Ólafsdóttir ◽  
Anna Dóra Sæþórsdóttir ◽  
Edita Tverijonaite

2021 ◽  
Vol 11 (22) ◽  
pp. 10898
Author(s):  
Sam Khamis ◽  
Ron Gurel ◽  
Moran Arad ◽  
Barry Danino

Objective: The goal of this study was to utilize Gait Profile Score (GPS) and Gait Deviation Index (GDI), to assess its capability of differentiating between injured and non-injured runners. Design: In total, 45 long-distance runners (15 non-injured, 30 injured), diagnosed with one of the following running related injuries, patella femoral pain syndrome, iliotibial pain syndrome, and medial tibial stress syndrome, were recruited. Methods: Data were obtained from a running analysis gait laboratory equipped with eight infrared motion-capturing cameras and a conventional treadmill. Running kinematics were recorded according to the Plug-In Gait model, measuring running deviations of the pelvis and lower extremities at a sampling rate of 200 Hz. GPS and GDI were calculated integrating pelvis and lower limb kinematics. Movement Analysis Profile results were compared between injured and non-injured runners. The non-parametric two-sample Wilcoxson test determined whether significant kinematic differences were observed. Results: Total GPS score significantly differed between the injured and non-injured runners. Not all running kinematics expressed by GDI differed between groups. Conclusions: GPS score was capable of discriminating between the injured and non-injured runners’ groups. This new running assessment method makes it possible to identify running injuries using a single numerical value and evaluate movements in individual joints.


Sign in / Sign up

Export Citation Format

Share Document