host proteins
Recently Published Documents


TOTAL DOCUMENTS

741
(FIVE YEARS 322)

H-INDEX

61
(FIVE YEARS 11)

2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan Wang ◽  
Chunjie Wu ◽  
Yu Du ◽  
Zhongwei Li ◽  
Minle Li ◽  
...  

AbstractCircular RNAs (circRNAs) are classified as noncoding RNAs because they are devoid of a 5’ end cap and a 3’ end poly (A) tail necessary for cap-dependent translation. However, increasing numbers of translated circRNAs identified through high-throughput RNA sequencing overlapping with polysome profiling indicate that this rule is being broken. CircRNAs can be translated in cap-independent mechanism, including IRES (internal ribosome entry site)-initiated pattern, MIRES (m6A internal ribosome entry site) -initiated patterns, and rolling translation mechanism (RCA). CircRNA-encoded proteins harbour diverse functions similar to or different from host proteins. In addition, they are linked to the modulation of human disease including carcinomas and noncarcinomas. CircRNA-related translatomics and proteomics have attracted increasing attention. This review discusses the progress and exclusive characteristics of circRNA translation and highlights the latest mechanisms and regulation of circRNA translatomics. Furthermore, we summarize the extensive functions and mechanisms of circRNA-derived proteins in human diseases, which contribute to a better understanding of intricate noncanonical circRNA translatomics and proteomics and their therapeutic potential in human diseases.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Fei Ke ◽  
Xue-Dong Yu ◽  
Zi-Hao Wang ◽  
Jian-Fang Gui ◽  
Qi-Ya Zhang

Abstract Background Ranaviruses (family Iridoviridae) are promiscuous pathogens that can infect across species barriers in poikilotherms and can replicate in amphibian and fish cells and even in cultured mammalian cells. However, as nucleocytoplasmic large DNA viruses (NCLDVs), their replication and transcription mechanisms remain largely unknown. Here, we screened and uncovered the replication and transcription machinery of two ranaviruses, Andrias davidianus ranavirus (ADRV) and Rana grylio virus (RGV), by a combination of methods, including the isolation of proteins on nascent DNA, recombinant virus-based affinity, and NanoLuc complementation assay. Results The ranavirus replication and transcription machinery was deeply dissected and identified as a complicated apparatus containing at least 30 viral and 6 host proteins. The viral proteins ADRV-47L/RGV-63R (DNA polymerase, vDPOL), ADRV-23L/RGV-91R (proliferating cell nuclear antigen, vPCNA), ADRV-85L/RGV-27R (single-stranded DNA binding protein, vSSB), ADRV-88L/RGV-24R (vhelicase/primase), etc., constitute the core replisome. Specifically, the core of the transcription complex, the viral RNA polymerase, contain the host RNAPII subunits Rpb3, Rpb6, and Rpb11, which was a first report in NCLDVs. Furthermore, correlations and interactions among these factors in the machinery were described. Significantly, the replisome core protein vDPOL (ADRV-47L) can interact with numerous viral and host proteins and could act as a linker and regulation center in viral DNA replication and transcription. Thus, these results depicted an architecture for ranavirus replication and transcription. Conclusions Up to 36 components from ranavirus and their host were found to form viral replisomes and transcription complexes using a series of precise methods, which further constructed an architecture for ranavirus replication and transcription in which vDPOL was a key central factor and various components correlated and cooperated. Therefore, it provides a cornerstone for further understanding the mechanisms of the replication and transcription of ranaviruses which can ensure the efficient production of progeny virus and adaptation to cross-species infection.


Author(s):  
Robert-William Welke ◽  
Hannah Sabeth Sperber ◽  
Amit Koikkarah ◽  
Laura Menke ◽  
Christian Sieben ◽  
...  

Hantaviruses are enveloped viruses that possess a tri-segmented, negative-sense RNA genome. The viral S-segment encodes the multifunctional nucleocapsid protein (N), which is involved in genome packaging, intracellular protein transport, immunoregulation and several other crucial processes during hantavirus infection. In this study we have generated fluorescently tagged N protein constructs derived from Puumalavirus, the dominant hantavirus species in Central, Northern and Eastern Europe. We have comprehensively characterized this protein in the rodent cell line CHO-K1, monitoring the dynamics of N protein complex formation and investigating co-localization with host proteins as well as the viral glycoproteins Gc and Gn. We found a significant spatial correlation of N with vimentin, actin and P-bodies, but not with microtubules. N constructs also co-localized with Gn and Gc, albeit not as strong as the glycoproteins associated with each other. Moreover, we as-sessed oligomerization of N constructs, observing efficient and concentration-dependent multi-merization, with complexes comprising more than 10 individual proteins.


Author(s):  
Hui Li ◽  
Wenqian Li ◽  
Shuangling Zhang ◽  
Manman Qiu ◽  
Zhuoran Li ◽  
...  

Identification of host factors involved in viral replication is an important approach in discovering viral pathogenic mechanisms and identifying potential therapeutic targets. Previously, we screened host proteins that were upregulated by EV71 infection.


2021 ◽  
pp. 1-19
Author(s):  
Nirupma Singh ◽  
Sneha Rai ◽  
Rakesh Bhatnagar ◽  
Sonika Bhatnagar

Large-scale visualization and analysis of HPIs involved in microbial CVDs can provide crucial insights into the mechanisms of pathogenicity. The comparison of CVD associated HPIs with the entire set of HPIs can identify the pathways specific to CVDs. Therefore, topological properties of HPI networks in CVDs and all pathogens was studied using Cytoscape3.5.1. Ontology and pathway analysis were done using KOBAS 3.0. HPIs of Papilloma, Herpes, Influenza A virus as well as Yersinia pestis and Bacillus anthracis among bacteria were predominant in the whole (wHPI) and the CVD specific (cHPI) network. The central viral and secretory bacterial proteins were predicted virulent. The central viral proteins had higher number of interactions with host proteins in comparison with bacteria. Major fraction of central and essential host proteins interacts with central viral proteins. Alpha-synuclein, Ubiquitin ribosomal proteins, TATA-box-binding protein, and Polyubiquitin-C &B proteins were the top interacting proteins specific to CVDs. Signaling by NGF, Fc epsilon receptor, EGFR and ubiquitin mediated proteolysis were among the top enriched CVD specific pathways. DEXDc and HELICc were enriched host mimicry domains that may help in hijacking of cellular machinery by pathogens. This study provides a system level understanding of cardiac damage in microbe induced CVDs.


2021 ◽  
Vol 2 (2) ◽  
pp. 107-126
Author(s):  
Rabbiah Manzoor Malik ◽  
Sahar Fazal ◽  
Syed Touqeer Abbas ◽  
Aamer Bhatti ◽  
Mukhtar Ullah ◽  
...  

Background: Human Papillomavirus (HPV) infection has been found to be the major cause of cancer of cervical region, in females.  Genome of HPV codes for 6 functional proteins E1, E2, E4, E5, E6 and E7. These proteins play different roles in development of HPV infection and its progression towards cervical cancer. The interactions of HPV proteins with human DNA and proteins occurs in the presence of short linear peptide motifs on these proteins, have similar sequence to those found on proteins in human cells. Methods: After identification of human motifs in HPV proteins, by use of ELM resource, their counter domains were found from PROSITE. The proteins of human proteome containing these counter domains were predicted as the proteins having possibility of interactions with HPV proteins.    Results: we predicted 9468 human proteins for having interactions with HPV proteins. Our predicted proteins were enriched with the host proteins having possibility of being interacted by HPV proteins. 10% of our predicted proteins were already reported to be affected by one or more HPV proteins. The list of predicated proteins can be utilized to find out the connectivity between the virus HPV and human host. It can also be used to determine the pathways involved in pathogenesis of HPV leading towards the cervical cancer Conclusion: The list of predicated proteins can be utilized to find out the connectivity between the virus HPV and human host. It can also be used to determine the pathways involved in pathogenesis of HPV leading towards the cervical cancer.


2021 ◽  
Author(s):  
Warren W. Wakarchuk ◽  
N. Martin Young ◽  
Simon J. Foote

Among the non-carbohydrate components of glycans, the addition of phosphocholine (ChoP) to the glycans of pathogens occurs more rarely than acetylation or methylation, but it has far more potent biological consequences. These arise from ChoP's multiple interactions with host proteins, which are important at all stages of the infection process. These stages include initial adherence to cells, encountering the host's innate immune system and then the adaptive immune system. Thus, in the initial stages of an infection, ChoP groups are an asset to the pathogen, but they can turn into a disadvantage subsequently. In this review, we have focussed on structural aspects of these phenomena. We describe the biosynthesis of the ChoP modification, the structures of the pathogen glycans known to carry ChoP groups and the host proteins that recognize ChoP.


Author(s):  
Angie Mordant ◽  
Manuel Kleiner

Metaproteomics is a powerful tool to study the intestinal microbiome. By identifying and quantifying a large number of microbial, dietary, and host proteins in microbiome samples, metaproteomics provides direct evidence of the activities and functions of microbial community members.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3510
Author(s):  
Ray Ishida ◽  
Jamie Cole ◽  
Joaquin Lopez-Orozco ◽  
Nawell Fayad ◽  
Alberto Felix-Lopez ◽  
...  

Mayaro virus (MAYV) is an emerging mosquito-transmitted virus that belongs to the genus Alphavirus within the family Togaviridae. Humans infected with MAYV often develop chronic and debilitating arthralgia and myalgia. The virus is primarily maintained via a sylvatic cycle, but it has the potential to adapt to urban settings, which could lead to large outbreaks. The interferon (IFN) system is a critical antiviral response that limits replication and pathogenesis of many different RNA viruses, including alphaviruses. Here, we investigated how MAYV infection affects the induction phase of the IFN response. Production of type I and III IFNs was efficiently suppressed during MAYV infection, and mapping revealed that expression of the viral non-structural protein 2 (nsP2) was sufficient for this process. Interactome analysis showed that nsP2 interacts with DNA-directed RNA polymerase II subunit A (Rpb1) and transcription initiation factor IIE subunit 2 (TFIIE2), which are host proteins required for RNA polymerase II-mediated transcription. Levels of these host proteins were reduced by nsP2 expression and during infection by MAYV and related alphaviruses, suggesting that nsP2-mediated inhibition of host cell transcription is an important aspect of how some alphaviruses block IFN induction. The findings from this study may prove useful in design of vaccines and antivirals, which are currently not available for protection against MAYV and infection by other alphaviruses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhen Guo ◽  
Shuai Xu ◽  
Xue Chen ◽  
Changhao Wang ◽  
Peilin Yang ◽  
...  

AbstractIron–sulfur clusters are essential cofactors found in all kingdoms of life and play essential roles in fundamental processes, including but not limited to respiration, photosynthesis, and nitrogen fixation. The chemistry of iron–sulfur clusters makes them ideal for sensing various redox environmental signals, while the physics of iron–sulfur clusters and its host proteins have been long overlooked. One such protein, MagR, has been proposed as a putative animal magnetoreceptor. It forms a rod-like complex with cryptochromes (Cry) and possesses intrinsic magnetic moment. However, the magnetism modulation of MagR remains unknown. Here in this study, iron–sulfur cluster binding in MagR has been characterized. Three conserved cysteines of MagR play different roles in iron–sulfur cluster binding. Two forms of iron–sulfur clusters binding have been identified in pigeon MagR and showed different magnetic properties: [3Fe–4S]-MagR appears to be superparamagnetic and has saturation magnetization at 5 K but [2Fe–2S]-MagR is paramagnetic. While at 300 K, [2Fe–2S]-MagR is diamagnetic but [3Fe–4S]-MagR is paramagnetic. Together, the different types of iron–sulfur cluster binding in MagR attribute distinguished magnetic properties, which may provide a fascinating mechanism for animals to modulate the sensitivity in magnetic sensing.


Sign in / Sign up

Export Citation Format

Share Document