3d geological model
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 44)

H-INDEX

9
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Yonghui Huang ◽  
Yuanzhi Cheng ◽  
Lu Ren ◽  
Fei Tian ◽  
Sheng Pan ◽  
...  

Assessment of available geothermal resources in the deep oil field is important to the synergy exploitation of oil and geothermal resources. A revised volumetric approach is proposed in this work for evaluating deep geothermal potential in an active oil field by integrating a 3D geological model into a hydrothermal (HT)-coupled numerical model. Based on the analysis of the geological data and geothermal conditions, a 3D geological model is established with respect to the study area, which is discretized into grids or elements represented in the geological model. An HT-coupled numerical model was applied based on the static geological model to approximate the natural-state model of the geothermal reservoir, where the thermal distribution information can be extracted. Then the geothermal resource in each small grid element is calculated using a volumetric method, and the overall geothermal resource of the reservoirs can be obtained by making an integration over each element of the geological model. A further parametric study is carried out to investigate the influence of oil and gas saturations on the overall heat resources. The 3D geological model can provide detailed information on the reservoir volume, while the HT natural-state numerical model addressed the temperature distribution in the reservoir by taking into account complex geological structures and contrast heterogeneity. Therefore, integrating the 3D geological modeling and HT numerical model into the geothermal resource assessment improved its accuracy and helped to identify the distribution map of the available geothermal resources, which indicate optimal locations for further development and utilization of the geothermal resources. The Caofeidian new town Jidong oil field serves as an example to depict the calculation workflow. The simulation results demonstrate in the Caofeidian new town geothermal reservoir that the total amount of geothermal resources, using the proposed calculation method, is found to be 1.23e+18 J, and the total geothermal fluid volume is 8.97e+8 m3. Moreover, this approach clearly identifies the regions with the highest potential for geothermal resources. We believe this approach provides an alternative method for geothermal potential assessment in oil fields, which can be also applied globally.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 75
Author(s):  
Jixiang Zhu ◽  
Yan Lu ◽  
Guanghui Zhang ◽  
Xiaoyuan Zhou ◽  
Guangjun Ji

Accurately depicting the spatial structure characteristics of Quaternary loose sedimentary strata is not only of great significance for the research of Quaternary geological evolution, but also for the analysis of spatial variation characteristics of the inner hydrogeological and engineering geological attributes of the strata. In this study, an approach for constructing a 3D geological model of Quaternary loose sedimentary strata is proposed based on global stratigraphical discrete points. The approach obtains the discrete control point set of each stratum by using limited borehole data for interpolation and encryption, and the contact relationships and intersection modes of adjacent strata can be determined via the analysis of stratigraphic sequence; finally, taking these as the professional basis, the construction of the 3D geological model of Quaternary loose sedimentary strata can be carried out. This application can not only accurately describe the three-dimensional spatial distribution characteristics of the Quaternary loose sedimentary strata, it can also be used to perform a layered simulation of the spatial variation characteristics of the inner geological properties of the Quaternary loose sedimentary strata, such as lithology, porosity, and water content, by taking the three-dimensional spatial framework of each stratum as the simulation boundary. Finally, this study takes the citizen center of Xiong’an new area as an example in order to verify the reliability and advancement of the 3D geological modeling scheme.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012007
Author(s):  
Mingwen Chi

Abstract In this paper, the technology of profile generation based on 3D model is studied. The main steps are as follows: (1) the location where the profile needs to be generated in 3D model design; (2) Using 3D data cutting technology to realize the generation of geological lines in profile; (3) Read the basic exploration data related to profile position in the database; (4) According to the data generated in the first three steps, the cross-section is automatically drawn after data coordinate transformation. The above method can quickly generate the geological profile of any location according to the 3D geological model, which is helpful for geological analysis and provides reference data for engineering design.


2021 ◽  
Vol 44 (3) ◽  
pp. 219-242
Author(s):  
Gongwen Wang ◽  
Shouting Zhang ◽  
Changhai Yan ◽  
Zhenshan Pang ◽  
Hongwei Wang ◽  
...  

The Fourth generation industrial age and 5G + intelligent communication in the "Fourth Paradigm of Science" in the 21st century provide a new opportunity for research on the relationship between mining development and environmental protection. This paper is based on the theory of metallogenic geodynamics background, metallogenic process and quantitative evaluation and chooses the Luanchuan district as a case study, using deep-level artificial intelligence mining and three/four-dimensional (3D/4D) multi-disciplinary, multi-parameter and multi-scale modeling technology platform of geoscience big data (including multi-dimensional and multi-scale geological, geophysical, geochemical, hyperspectral and highresolution remote sensing (multi-temporal) and real-time mining data), carrying out the construction of 3D geological model, metallogenic process model and quantitative exploration model from district to deposit scales and the quantitative prediction and evaluation of the regional Mo polymetallic mineral resources, the aim is to realize the dynamic evaluation of highprecision 3D geological (rock, structure, hydrology, soil, etc.) environment protection and comprehensive development and utilization of mineral resources in digital and wisdom mines, it provides scientific information for the sustainable development of mineral resources and mine environment in the study area. The research results are summarized as follows: (1) The geoscience big data related to mineral resource prediction and evaluation of district include mining data such as 3D geological modeling, geophysics interpretation, geochemistry, and remote sensing modeling, which are combined with GeoCube3.0 software. The optimization of deep targets and comprehensive evaluation of mineral resources in Luanchuan district (500 km2, 2.5 km deep) have been realized, including 6.5 million tons of Mo, 1.5 million tons of W, and 5 million tons of Pb-Zn-Ag. (2) The 3D geological modeling of geology, mineral deposit, and exploration targeting is related to the mine environment. The data of exploration and mining in the pits of Nannihu – Sandaozhuang – Shangfang deposits and the deep channels of Luotuoshan and Xigou deposits show a poor spatial correlation between the NW-trending porphyryskarn deposits and the ore bodies. The NE-trending faults are usually tensional or tensional-torsional structures formed in the post-metallogenic period, which is the migration pathway of hydrothermal fluid of the related Pb-Zn deposit. There is a risk of groundwater pollution in the high-altitude Pb-Zn mining zones, such as the Lengshui and Bailugou deposits controlled by NE-trending faults are developed outside of porphyry-skarn types of Mo (W) deposits in the Luanchuan area. (3) Construction of mineral resources and environmental assessment and decision-making in intelligent digital mines: 3D geological model is established in large mines and associated with ancient mining caves, pit, and deep roadway engineering in the mining areas to realize reasonable orientation and sustainable development of mining industry. The hyperspectral database is used to construct three-dimensional useful and harmful element models to realize the association of exploration, mining, and mineral processing mineralogy for the recovery of harmful elements (As, Sb, Hg, etc.). 0.5 m resolution Worldview2 images are used to identify the distribution of Fe in the wastewater and slag slurry of important tailings reservoirs, so as to protect surface runoff and soil pollution.


2021 ◽  
Author(s):  
Riccardo Pozzobon ◽  
Matteo Massironi ◽  
Luca Penasa ◽  
Sabrina Ferrari

2021 ◽  
Author(s):  
Riccardo Pozzobon ◽  
Costanza Rossi ◽  
Alice Lucchetti ◽  
Matteo Massironi ◽  
Maurizio Pajola ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhenhua Jiao ◽  
Lei Wang ◽  
Ming Zhang ◽  
Jiong Wang

The ground pressure distributes significant variation in underground mining near fault. Fault reactivation is an important factor to induce the rock burst. Therefore, characterizing geological settings in mining areas by the geological information can improve the accuracy of simulation. To investigate the characteristic of mining stress evolution and reactivation of the F16 reverse fault during the retreat Mining-Induced s in Yima coalfield, a three-dimensional digital elevation model based on GIS platform was applied. The 3D geological model includes three working faces, and F16 fault was constructed by AutoCAD software. Then, the 3D geological model was imported into the FLAC3D code to simulate the potential of mining-induced fault reactivation. The simulation results illustrate that the footwall of F16 fault is a high stress concentration area. Affected by F16 fault and the huge thick gravel rock in the roof, the coal seam near the fault accumulates a large amount of elastic strain energy, which increases the potential of rock burst hazards in the process of mining.


2021 ◽  
Author(s):  
Mark Jessell

<p>In geological settings characterised by folded and faulted strata, and where good field data exist, we have been able to automate a large part of the 3D modelling process directly from the raw geological database (maps, bedding orientations and drillhole data). The automation is based upon the deconstruction of the geological maps and databases into positional, gradient and spatial and temporal topology information, and the combination of deconstructed data into augmented inputs for 3D geological modelling systems, notably LoopStructural and GemPy.</p><p>When we try to apply this approach to more complex terranes, such as greenstone belts, we come across two types of problem:</p><ul><li>1) Insufficient structural data, since the more complexly deformed the geology, the more we need to rely on secondary structural information, such as fold axial traces and vergence to ‘solve’ the structures. Unfortunately these types of data are not always stored in national geological databases. One approach to overcoming this is to analyse the simpler (i.e. bedding) data to try and estimate the secondary information automatically.</li> </ul><p> </p><ul><li>2) The available information is unsuited to the logic of the modelling system. Most modern modelling platforms assume the knowledge of a chronostratigraphic hierarchy, however, especially in more complexly deformed regions, a lithostratigraphy may be all that is available. Again a pre-processing of the map and stratigraphic information may be possible to overcome this problem.</li> </ul><p>This presentation will highlight the progress that has been made, as well as the road-blocks to universal automated 3D geological model construction.</p><p> </p><p>We acknowledge the support of the MinEx CRC and the Loop: Enabling Stochastic 3D Geological Modelling (LP170100985) consortia. The work has been supported by the Mineral Exploration Cooperative Research Centre whose activities are funded by the Australian Government's Cooperative Research Centre Programme. This is MinEx CRC Document 2020/xxx.</p><p> </p>


2021 ◽  
Author(s):  
Léo Marconato ◽  
Philippe-Hervé Leloup ◽  
Cécile Lasserre ◽  
Séverine Caritg ◽  
Romain Jolivet ◽  
...  

<div> <div> <div> <p>The 2019, M<sub>w</sub>4.9 Le Teil earthquake occurred in southeastern France, causing important damage in a slow deforming region. Field based, remote sensing and seismological studies following the event revealed its very shallow depth, a rupture length of ~5 km with surface rupture evidences and a thrusting mechanism. We further investigate this earthquake by combining geological field mapping and 3D geology, InSAR time series analysis and coseismic slip inversion.</p> <p>From structural, stratigraphic and geological data collected around the epicenter, we first produce a 3D geological model over a 70 km<sup>2</sup> and 3 km deep zone surrounding the 2019 rupture, using the GeoModeller software. This model includes the geometry of the main faults and geological layers, and especially a geometry for La Rouvière Fault, an Oligocene normal fault likely reactivated during the earthquake.</p> <p>We also generate a time series of the surface displacement by InSAR, based on Sentinel-1 data ranging from early January 2019 to late January 2020, using the NSBAS processing chain. The spatio-temporal patterns of the surface displacement for this limited time span show neither clear pre-seismic signal nor significant postseismic slip. We extract from the InSAR time series the coseismic displacement pattern, and in particular the along-strike slip distribution that shows spatial variations. The maximum relative displacement along the Line-Of-Sight is up to ~16 cm and is located in the southwestern part of the rupture.</p> <p>We then invert for the slip distribution on the fault from the InSAR coseismic surface displacement field. We use a non-negative least square approach based on the CSI software and the fault surface trace defined in the 3D geological model, exploring the range of plausible fault dip values. Best-fitting dips range between 55° and 60°. Such values are slightly lower than those measured on La Rouvière Fault planes in the field. Our model confirms the reactivation of La Rouvière fault, with reverse slip at very shallow depth and two main slip patches reaching 30 cm and 24 cm of slip at 400-500m depth. We finally discuss how the 3D fault geometry and geological configuration could have impacted the slip distribution and propagation during the earthquake.</p> <p>This study is a step to better quantify strain accumulation and assess the seismic hazard associated with other similar faults along the Cévennes fault system, in a densely populated area hosting several nuclear plants.</p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document