freeway traffic
Recently Published Documents


TOTAL DOCUMENTS

602
(FIVE YEARS 80)

H-INDEX

46
(FIVE YEARS 5)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260977
Author(s):  
Junjun Wei ◽  
Kejun Long ◽  
Jian Gu ◽  
Zhengchuan Zhou ◽  
Shun Li

Ramp metering on freeway is one of the effective methods to alleviate traffic congestion. This paper advances the field of freeway ramp metering by introducing an application to the on-ramp, capitalizing on the macro traffic follow theory and improved the freeway traffic flow. The Particle Swarm Optimization (PSO) based on Proportional Integral Derivative (PID) controller is further developed to single ramp metering as well as to optimize the PID parameters. The approach is applied to a case study of the Changyi Freeway(G5513) in Hunan, China. The simulation is conducted by applying the actual profile traffic data to PID controller to adjust the entering traffic flow on the freeway on-ramp. The results show that the PSO-PID controller tends to converge in about 80 minutes, and the density tends to be stable after 240 iterations. The system has smaller oscillation, more accurate adjustment of ramp regulation rate, and more ideal expected traffic flow density. The traffic congestion on mainline is effectively slowed down, traffic efficiency is improved, and travel time and cost are reduced. The nonlinear processing ability of PSO-PID controller overcomes the defects of the traditional manual closing ramp, and can be successfully applied in the field of intelligent ramp metering.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 5997
Author(s):  
Suhaib Alshayeb ◽  
Aleksandar Stevanovic ◽  
Nikola Mitrovic ◽  
Branislav Dimitrijevic

Express lanes (ELs) implementation is a proven strategy to deal with freeway traffic congestion. Dynamic toll pricing schemes effectively achieve reliable travel time on ELs. The primary inputs for the typical dynamic pricing algorithms are vehicular volumes and speeds derived from the data collected by sensors installed along the ELs. Thus, the operation of dynamic pricing critically depends on the accuracy of data collected by such traffic sensors. However, no previous research has been conducted to explicitly investigate the impact of sensor failures and erroneous sensors’ data on toll computations. This research fills this gap by examining the effects of sensor failure and faulty detection scenarios on ELs tolls calculated by a dynamic pricing algorithm. The paper’s methodology relies on applying the dynamic toll pricing algorithm implemented in the field and utilizing the fundamental speed-volume relationship to ‘simulate’ the sensors’ reported data. We implemented the methodology in a case study of ELs on Interstate-95 in Southeast Florida. The results have shown that the tolls increase when sensors erroneously report higher than actual traffic demand. Moreover, it has been found that the accuracy of individual sensors and the number of sensors utilized to estimate traffic conditions are critical for accurate toll calculations.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5232
Author(s):  
Olivér Rákos ◽  
Tamás Bécsi ◽  
Szilárd Aradi ◽  
Péter Gáspár

Several problems can be encountered in the design of autonomous vehicles. Their software is organized into three main layers: perception, planning, and actuation. The planning layer deals with the sort and long-term situation prediction, which are crucial for intelligent vehicles. Whatever method is used to make forecasts, vehicles’ dynamic environment must be processed for accurate long-term forecasting. In the present article, a method is proposed to preprocess the dynamic environment in a freeway traffic situation. The method uses the structured data of surrounding vehicles and transforms it to an occupancy grid which a Convolutional Variational Autoencoder (CVAE) processes. The grids (2048 pixels) are compressed to a 64-dimensional latent vector by the encoder and reconstructed by the decoder. The output pixel intensities are interpreted as probabilities of the corresponding field is occupied by a vehicle. This method’s benefit is to preprocess the structured data of the dynamic environment and represent it in a lower-dimensional vector that can be used in any further tasks built on it. This representation is not handmade or heuristic but extracted from the database patterns in an unsupervised way.


Automatica ◽  
2021 ◽  
Vol 130 ◽  
pp. 109655
Author(s):  
Silvia Siri ◽  
Cecilia Pasquale ◽  
Simona Sacone ◽  
Antonella Ferrara

Smart Cities ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 864-880
Author(s):  
Christina Ng ◽  
Susilawati Susilawati ◽  
Md Abdus Samad Kamal ◽  
Irene Chew Mei Leng

Binary logistic regression has been used to estimate the probability of lane change (LC) in the Cell Transmission Model (CTM). These models remain rigid, as the flexibility to predict LC for different cell size configurations has not been accounted for. This paper introduces a relaxation method to refine the conventional binary logistic LC model using an event-tree approach. The LC probability for increasing cell size and cell length was estimated by expanding the LC probability of a pre-defined model generated from different configurations of speed and density differences. The reliability of the proposed models has been validated with NGSIM trajectory data. The results showed that the models could accurately estimate the probability of LC with a slight difference between the actual LC and predicted LC (95% Confidence Interval). Furthermore, a comparison of prediction performance between the proposed model and the actual observations has verified the model’s prediction ability with an accuracy of 0.69 and Area Under Curve (AUC) value above 0.6. The proposed method was able to accommodate the presence of multiple LCs when cell size changes. This is worthwhile to explore the importance of such consequences in affecting the performance of LC prediction in the CTM model.


Author(s):  
Leila Azizi ◽  
Mohammed Hadi

The introduction of connected vehicles, connected and automated vehicles, and advanced infrastructure sensors will allow the collection of microscopic metrics that can be used for better estimation and prediction of traffic performance. This study examines the use of disturbance metrics in combination with the macroscopic metrics usually used for the estimation of traffic safety and mobility. The disturbance metrics used are the number of oscillations and a measure of disturbance durations in the time exposed time to collision. The study investigates using the disturbance metrics in data clustering for better off-line categorization of traffic states. In addition, the study uses machine-learning based classifiers for the recognition and prediction of the traffic state and safety in real-time operations. The study also demonstrates that the disturbance metrics investigated are significantly related to crashes. Thus, this study recommends the use of these metrics as part of decision tools that support the activation of transportation management strategies to reduce the probability of traffic breakdown, ease traffic disturbances, and reduce the probability of crashes.


Sign in / Sign up

Export Citation Format

Share Document