tin alloys
Recently Published Documents


TOTAL DOCUMENTS

640
(FIVE YEARS 25)

H-INDEX

36
(FIVE YEARS 3)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 143
Author(s):  
Zhangxing Liu ◽  
Rongfeng Zhou ◽  
Wentao Xiong ◽  
Zilong He ◽  
Tao Liu ◽  
...  

Copper–tin alloys are widely used in the machining and molding of sleeves, bearings, bearing housings, gears, etc. They are a material used in heavy-duty, high-speed and high-temperature situations and subject to strong friction conditions due to their high strength, high modulus of elasticity, low coefficient of friction and good wear and corrosion resistance. Although copper–tin alloys are excellent materials, a higher performance of mechanical parts is required under extreme operating conditions. Plastic deformation is an effective way to improve the overall performance of a workpiece. In this study, medium-temperature compression tests were performed on a semi-solid CuSn10P1 alloy using a Gleeble 1500D testing machine at different temperatures (350−440 °C) and strain rates (0.1−10 s−1) to obtain its medium-temperature deformation characteristics. The experimental results show that the filamentary deformation marks appearing during the deformation are not single twins or slip lines, but a mixture of dislocations, stacking faults and twins. Within the experimental parameters, the filamentary deformation marks increase with increasing strain and decrease with increasing temperature. Twinning subdivides the grains into lamellar sheets, and dislocation aggregates are found near the twinning boundaries. The results of this study are expected to make a theoretical contribution to the forming of copper–tin alloys in post-processing processes such as rolling and forging.


2021 ◽  
Vol 119 (16) ◽  
pp. 162102
Author(s):  
Dominic Imbrenda ◽  
Rigo A. Carrasco ◽  
Ryan Hickey ◽  
Nalin S. Fernando ◽  
Stefan Zollner ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5944
Author(s):  
Janusz Kozana ◽  
Aldona Garbacz-Klempka ◽  
Marcin Piękoś ◽  
Małgorzata Perek-Nowak ◽  
Paweł Pałka

Investigations are conducted in order to maintain or to improve the selected properties of the group of foundry copper-tin alloys with nickel and titanium additions, at a limited fraction of the critical (deficit) element such as tin. The crystallisation process, as well as changes of the microstructure and selected mechanical properties of the CuSn8 alloy—occurring due to introducing alloying additions—were analysed. Investigations of the macro and microstructure were performed using optical and scanning electron microscopy. Based on the thermal analysis and thermodynamic modelling using the CALPHAD (CALculations of PHAse Diagrams) method, the crystallisation process was analysed. The identification of phases was performed by XRD (X-ray diffraction). In addition, such parameters as tensile strength-UTS, elongation-A and hardness-HBS were tested. Under the influence of the introduced titanium, the columnar crystals are reduced due to the crystallisation of the alloy at the walls of the mould. Precipitations (intermetallic phases) crystallize first (primary). The intermetallic phases associated with the presence of the alloying elements nickel and titanium are located in the interdendritic regions. In tin bronzes with titanium additions, hardness (HBS) increases, tensile strength (UTS) negligibly decreases, while elongation (A) significantly decreases. In the case of CuSnNi bronze, the addition of 0.2 wt.% Ti increases the hardness and increases ultimate tensile strength (UTS), while reducing the elongation (A). Higher Ti additions increase HBS, slightly decrease the tensile strength, and significantly reduce the elongation.


Author(s):  
S. Hong ◽  
Y. H. Jo

Abstract. In the field of cultural heritage, replication has been performed for preservation, exhibition, and education purposes. In particular, due to advancement in computer technology, replication which combines the three-dimensional (3D) scanning and printing has widely performed. These technologies have been able to ensure morphological similarity as well as to avoid damaging artifacts in a contactless manner. In this study, a design mock-up for producing replacements was made for the purpose of preserving original forms, usability, and mass production for ritual utensils used in ancestral memorial rites annually. 3D precision scanner was used to obtain external information of ritual utensils and shape information of pattern parts. The measurements on height, width, and thickness of the body, and two handles and three feet showed fine shape differences, respectively. Therefore, representative models were selected and reconstructed. In addition, the upper and lower parts of the body, handles, and feet were separately manufactured for mass production by using sand casting. A model manufactured during the reverse design like above was completed by considering average shrinkage (4%) for the casting of copper-tin alloys. A model was completed and 3D-printed with a material extrusion technique, and a design mock-up for replication was created. In this study, a 3D printing technology was applied to ritual utensils and presented a replication methodology applicable to used artifacts. For this purpose, a model suitable for the replication method was produced based on the data obtained by 3D scanning of ritual utensils. A design mock-up, which is 3D-printed with a material extrusion technique, has enhanced design completeness by performing continuous design and dimensional inspection.


2021 ◽  
Vol 13 (3) ◽  
pp. 216-229
Author(s):  
P. A. Storozhenko ◽  
K. D. Magdeev ◽  
A. A. Grachev ◽  
V. I. Shiryaev

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zan Wang ◽  
X. Y. Cai ◽  
W. K. Zhao ◽  
H. Wang ◽  
Y. W. Ruan

In this work, we investigate the thermal conductivity properties of Si 1 − x Ge x and Si 0.8 Ge 0 Sn 2 y alloys. The equilibrium molecular dynamics (EMD) is employed to calculate the thermal conductivities of Si 1 − x Ge x alloys when x is different at temperatures ranging from 100 K to 1100 K. Then nonequilibrium molecular dynamics (NEMD) is used to study the relationships between y and the thermal conductivities of Si 0.8 Ge 0.2 Sn 2 y alloys. In this paper, Ge atoms are randomly doped, and tin atoms are doped in three distributing ways: random doping, complete doping, and bridge doping. The results show that the thermal conductivities of Si 1 − x Ge x alloys decrease first, then increase with the rise of x , and reach the lowest value when x changes from 0.4 to 0.5. No matter what the value of x is, the thermal conductivities of Si 1 − x Ge x alloys decrease with the increase of temperature. Thermal conductivities of Si 0.8 Ge 0.2 alloys can be significantly inhibited by doping an appropriate number of Sn atoms. For the random doping model, thermal conductivities of Si 0.8 Ge 0.2 Sn y alloys approach the lowest level when y is 0.10. Whether it is complete doping or bridge doping, thermal conductivities decrease with the increase of the number of doped layers. In addition, in the bridge doping model, both the number of Sn atoms in the [001] direction and the penetration distance of Sn atoms strongly influence thermal conductivities. The thermal conductivities of Si 0.8 Ge 0.2 Sn y alloys are positively associated with the number of Sn atoms in the [001] direction and the penetration distance of Sn atoms.


2021 ◽  
Vol 1 (1-2) ◽  
pp. 16-29
Author(s):  
P. A. Storozhenko ◽  
K. D. Magdeev ◽  
A. A. Grachev ◽  
V. I. Shiryaev

This is the first part of a series of reviews devoted to the direct synthesis of organotin compounds. This review considers condition and results of the interaction of tin alloys with organic halogenides. The efficient application of catalysts and the prospects of using tin alloys for the synthesis of organotin compounds are analyzed; possible mechanisms of these processes are discussed.


Author(s):  
S. A. Trebukhov ◽  
◽  
V. N. Volodin ◽  
O. V. Ulanova ◽  
A. V. Nitsenko ◽  
...  

Only a few works have been devoted to thermodynamic studies of the lead-tin system by methods including the volatile components evaporation process. When the binary system is separated into metals by distillation, the volatile component is removed from the alloy and the low-volatile component accumulates in the bottom products, that is, there are alloy composition changes over the entire concentration range. It is necessary to know the boundaries position of the melt and vapor coexistence fields on the state diagram, especially for solutions beneficiated with non-volatile metal to assess the quality of the vapor phase by the content of the low-volatile component. In this regard, the study has been completed with the purpose to clarify the values of the thermodynamic functions of the formation and evaporation of lead-tin melts required to calculate the boundaries of the liquid and vapor coexistence fields on the state diagram that enables us to judge the amount of a low-volatile component in the vapor phase under equilibrium conditions. The thermodynamic activity of lead was calculated, as well as the numerical integration of the Gibbs-Duhem equation using the substitution proposed by Darken is the thermodynamic activity and pressure of saturated tin vapor Based on the values of the saturated lead vapor pressure, determined by the boiling point method (isothermal version) for alloys predominantly of the lead edge of the phase diagram. The thermodynamic constants thus obtained will add to the base of physicochemical data and will be used to calculate the boundaries of the vapor-liquid equilibrium fields on the phase diagram, allowing to determine the possibility and completeness of the distillation separation of metals.


Sign in / Sign up

Export Citation Format

Share Document