bed nucleus
Recently Published Documents


TOTAL DOCUMENTS

1030
(FIVE YEARS 236)

H-INDEX

89
(FIVE YEARS 8)

2022 ◽  
Vol 15 ◽  
Author(s):  
Meghan L. Donovan ◽  
Eileen K. Chun ◽  
Yan Liu ◽  
Zuoxin Wang

The socially monogamous prairie vole (Microtus ochrogaster) offers a unique opportunity to examine the impacts of adolescent social isolation on the brain, immune system, and behavior. In the current study, male and female prairie voles were randomly assigned to be housed alone or with a same-sex cagemate after weaning (i.e., on postnatal day 21–22) for a 6-week period. Thereafter, subjects were tested for anxiety-like and depressive-like behaviors using the elevated plus maze (EPM) and Forced Swim Test (FST), respectively. Blood was collected to measure peripheral cytokine levels, and brain tissue was processed for microglial density in various brain regions, including the Nucleus Accumbens (NAcc), Medial Amygdala (MeA), Central Amygdala (CeA), Bed Nucleus of the Stria Terminalis (BNST), and Paraventricular Nucleus of the Hypothalamus (PVN). Sex differences were found in EPM and FST behaviors, where male voles had significantly lower total arm entries in the EPM as well as lower latency to immobility in the FST compared to females. A sex by treatment effect was found in peripheral IL-1β levels, where isolated males had a lower level of IL-1β compared to cohoused females. Post-weaning social isolation also altered microglial density in a brain region-specific manner. Isolated voles had higher microglial density in the NAcc, MeA, and CeA, but lower microglial density in the dorsal BNST. Cohoused male voles also had higher microglial density in the PVN compared to cohoused females. Taken together, these data suggest that post-weaning social housing environments can alter peripheral and central immune systems in prairie voles, highlighting a potential role for the immune system in shaping isolation-induced alterations to the brain and behavior.


2021 ◽  
Author(s):  
Maya Xia ◽  
Benjamin Owen ◽  
Jeremy Chiang ◽  
Alyssa Levitt ◽  
Wen Wei Yan ◽  
...  

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in refractory epilepsy patients. Accumulating evidence from recent human studies and animal models suggests that seizure-related respiratory arrest may be important for initiating cardiorespiratory arrest and death. Prior evidence suggests that apnea onset can coincide with seizure spread to the amygdala and that stimulation of the amygdala can reliably induce apneas in epilepsy patients, potentially implicating amygdalar regions in seizure-related respiratory arrest and subsequent postictal hypoventilation and cardiorespiratory death. This study aimed to determine if an extended amygdalar structure, the dorsal bed nucleus of the stria terminalis (dBNST), is involved in seizure-induced respiratory arrest (S-IRA) and death using DBA/1 mice, a mouse strain which has audiogenic seizures and a high incidence of postictal respiratory arrest and death. The presence of S-IRA significantly increased c-Fos expression in the dBNST of DBA/1 mice. Furthermore, disruption of synaptic output from the dBNST via viral-induced tetanus neurotoxin significantly improved survival following S-IRA in DBA/1 mice without affecting baseline breathing or hypercapnic and hypoxic ventilatory response. This disruption in the dBNST resulted in changes to the balance of excitatory/inhibitory synaptic events in the downstream brainstem regions of the lateral parabrachial nucleus (PBN) and the periaqueductal gray (PAG). These findings suggest that the dBNST is a potential subcortical forebrain site necessary for the mediation of seizure-induced respiratory arrest, potentially through its outputs to brainstem respiratory regions.


2021 ◽  
pp. 1-22
Author(s):  
Dinavahi V. P. S. Murty ◽  
Songtao Song ◽  
Kelly Morrow ◽  
Jongwan Kim ◽  
Kesong Hu ◽  
...  

Abstract In the present fMRI study, we examined how anxious apprehension is processed in the human brain. A central goal of the study was to test the prediction that a subset of brain regions would exhibit sustained response profiles during threat periods, including the anterior insula, a region implicated in anxiety disorders. A second important goal was to evaluate the responses in the amygdala and the bed nucleus of the stria terminals, regions that have been suggested to be involved in more transient and sustained threat, respectively. A total of 109 participants performed an experiment in which they encountered “threat” or “safe” trials lasting approximately 16 sec. During the former, they experienced zero to three highly unpleasant electrical stimulations, whereas in the latter, they experienced zero to three benign electrical stimulations (not perceived as unpleasant). The timing of the stimulation during trials was randomized, and as some trials contained no stimulation, stimulation delivery was uncertain. We contrasted responses during threat and safe trials that did not contain electrical stimulation, but only the potential that unpleasant (threat) or benign (safe) stimulation could occur. We employed Bayesian multilevel analysis to contrast responses to threat and safe trials in 85 brain regions implicated in threat processing. Our results revealed that the effect of anxious apprehension is distributed across the brain and that the temporal evolution of the responses is quite varied, including more transient and more sustained profiles, as well as signal increases and decreases with threat.


2021 ◽  
Vol 15 ◽  
Author(s):  
Nadia Kaouane ◽  
Sibel Ada ◽  
Marlene Hausleitner ◽  
Wulf Haubensak

Opposite emotions like fear and reward states often utilize the same brain regions. The bed nucleus of the stria terminalis (BNST) comprises one hub for processing fear and reward processes. However, it remains unknown how dorsal BNST (dBNST) circuits process these antagonistic behaviors. Here, we exploited a combined Pavlovian fear and reward conditioning task that exposed mice to conditioned tone stimuli (CS)s, either paired with sucrose delivery or footshock unconditioned stimuli (US). Pharmacological inactivation identified the dorsal BNST as a crucial element for both fear and reward behavior. Deep brain calcium imaging revealed opposite roles of two distinct dBNST neuronal output pathways to the periaqueductal gray (PAG) or paraventricular hypothalamus (PVH). dBNST neural activity profiles differentially process valence and Pavlovian behavior components: dBNST-PAG neurons encode fear CS, whereas dBNST-PVH neurons encode reward responding. Optogenetic activation of BNST-PVH neurons increased reward seeking, whereas dBNST-PAG neurons attenuated freezing. Thus, dBNST-PVH or dBNST-PAG circuitry encodes oppositely valenced fear and reward states, while simultaneously triggering an overall positive affective response bias (increased reward seeking while reducing fear responses). We speculate that this mechanism amplifies reward responding and suppresses fear responses linked to BNST dysfunction in stress and addictive behaviors.


2021 ◽  
Vol 11 (12) ◽  
pp. 1620
Author(s):  
Linas Wilkialis ◽  
Nelson B. Rodrigues ◽  
Danielle S. Cha ◽  
Ashley Siegel ◽  
Amna Majeed ◽  
...  

The COVID-19 pandemic has resulted in a predominantly global quarantine response that has been associated with social isolation, loneliness, and anxiety. The foregoing experiences have been amply documented to have profound impacts on health, morbidity, and mortality. This narrative review uses the extant neurobiological and theoretical literature to explore the association between social isolation, loneliness, and anxiety in the context of quarantine during the COVID-19 pandemic. Emerging evidence suggests that distinct health issues (e.g., a sedentary lifestyle, a diminished overall sense of well-being) are associated with social isolation and loneliness. The health implications of social isolation and loneliness during quarantine have a heterogenous and comorbid nature and, as a result, form a link to anxiety. The limbic system plays a role in fear and anxiety response; the bed nucleus of the stria terminalis, amygdala, HPA axis, hippocampus, prefrontal cortex, insula, and locus coeruleus have an impact in a prolonged anxious state. In the conclusion, possible solutions are considered and remarks are made on future areas of exploration.


eNeuro ◽  
2021 ◽  
pp. ENEURO.0425-21.2021
Author(s):  
Clara Engelhardt ◽  
Fiona Tang ◽  
Radwa Elkhateib ◽  
Joeri Bordes ◽  
Lea Maria Brix ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Kay Tye ◽  
Gillian Matthews ◽  
Mackenzie Lemieux ◽  
Elizabeth Brewer ◽  
Raymundo Miranda ◽  
...  

Abstract Affiliative social connections facilitate well-being and survival in numerous species. Engaging in social interactions requires positive and negative motivational drive, elicited through coordinated activity across neural circuits. However, the identity, interconnectivity, and functional encoding of social information within these circuits remains poorly understood. Here, we focused on downstream projections of dorsal raphe nucleus (DRN) dopamine neurons (DRNDAT), which we previously implicated in ‘negative drive’-induced social motivation. We show that three prominent DRNDAT projections – to the bed nucleus of the stria terminalis (BNST), central amygdala (CeA), and posterior basolateral amygdala (BLP) – play separable roles in behavior, despite substantial collateralization. Photoactivation of the DRNDAT-CeA projection promoted social behavior and photoactivation of the DRNDAT-BNST projection promoted exploratory behavior, while the DRNDAT-BLP projection supported place avoidance, suggesting a negative affective state. Downstream regions showed diverse, region-specific, receptor expression, poising DRNDAT neurons to act through dopamine, neuropeptide, and glutamate transmission. Furthermore, we show ex vivo that the effect of DRNDAT photostimulation on downstream neuron excitability was predicted by baseline cell properties, suggesting cell-type-specific modulation. Collectively, these data indicate that DRNDAT neurons may bias behavior via precise modulation of cellular activity in broadly-distributed target structures.


Sign in / Sign up

Export Citation Format

Share Document