bond slip
Recently Published Documents


TOTAL DOCUMENTS

649
(FIVE YEARS 213)

H-INDEX

36
(FIVE YEARS 8)

2022 ◽  
Vol 148 (3) ◽  
Author(s):  
Faraz Tariq ◽  
Pradeep Bhargava
Keyword(s):  

2022 ◽  
Vol 11 (1) ◽  
pp. 1-19
Author(s):  
Abbas Fathi ◽  
Georges El-Saikaly ◽  
Omar Chaallal

Reinforced concrete (RC) structures subjected to cyclic fatigue loading are prone to progressive damage. Among the types of structural damage, those leading to shear deficiencies can result in sudden rupture of structures without warning. Hence, RC structures deficient in shear urgently need retrofitting. The use of externally bonded (EB) fiber-reinforced polymer (FRP) composites presents many advantages and is a very promising technology for shear strengthening of RC structures. This paper encompasses a wide range of research findings related to the interaction between concrete and FRP under fatigue loading. The behavior of the bond between FRP and concrete plays a major role in the failure mode of FRP shear-strengthened structures especially under fatigue. Therefore, it is of interest to characterize the FRP/concrete interaction using appropriate models with respect to the influencing parameters. The paper will first discuss existing design guidelines and considerations related to the fatigue behavior of RC structures. A thorough review of available literature on EB-FRP/concrete bond in shear under cyclic fatigue loading will then be presented, with a focus on proposed bond-slip models and finite element studies of the FRP/concrete interface under fatigue loading.


Author(s):  
Pâmela Daniela Nogueira Reges ◽  
Roque Luiz da Silva Pitangueira ◽  
Leandro Lopes da Silva

Abstract The development of numerical and computational resources that can present reliable models for the analysis of reinforced concrete structures is mainly driven by its widespread use. Considering that reinforced concrete is a composite material and bond is the load-carrying mechanism, these models must consider that the structural behavior is affected by the interaction between concrete and reinforcement. On this basis, the Finite Element Method (FEM) is a well-established method able to provide consistent results for reinforced concrete modeling through reinforcement and bond models. Nevertheless, to simplify the analysis, the hypothesis of strain compatibility between concrete and reinforcement is usually considered. Under certain loads and specific geometries, this hypothesis is not valid, and the bond-slip phenomenon must be considered to fully characterize the structural behavior. To fulfill this need, this paper presents a graphic interface that enables the modeling of reinforced concrete structures through discrete and embedded reinforcement models, with the possibility to include the bond-slip phenomenon based on several constitutive laws proposed in the literature. The computational implementations were held in the INSANE (INteractive Structural ANalysis Environment), an open-source software based on the Object-Oriented Programming paradigm, which enclosures several constitutive models for nonlinear concrete modeling and different numerical techniques, and a post-processing application able to represent the results by way of a friendly-user graphic interface.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 293
Author(s):  
Alinda Dey ◽  
Domas Valiukas ◽  
Ronaldas Jakubovskis ◽  
Aleksandr Sokolov ◽  
Gintaris Kaklauskas

A bond mechanism at the reinforcement-concrete interface is one of the key sources of the comprehensive functioning of reinforced concrete (RC) structures. In order to apprehend the bond mechanism, the study on bond stress and slip relation (henceforth referred as bond-slip) is necessary. On this subject, experimental and numerical investigations were performed on short RC tensile specimens. A double pull-out test with pre-installed electrical strain gauge sensors inside the modified embedded rebar was performed in the experimental part. Numerically, a three dimensional rib scale model was designed and finite element analysis was performed. The compatibility and reliability of the numerical model was verified by comparing its strain result with an experimentally obtained one. Afterwards, based on stress transfer approach, the bond-slip relations were calculated from the extracted strain results. The maximum disparity between experimental and numerical investigation was found as 19.5% in case of strain data and 7% for the bond-slip relation at the highest load level (110 kN). Moreover, the bond-slip curves at different load levels were compared with the bond-slip model established in CEB-fib Model Code 2010 (MC2010). Overall, in the present study, strain monitoring through the experimental tool and finite element modelling have accomplished a broader picture of the bond mechanism at the reinforcement-concrete interface through their bond-slip relationship.


Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Nouman Khattak ◽  
Moustafa Mansour ◽  
Tamer El-Maaddawy ◽  
Najif Ismail

This paper aims to examine the nonlinear flexural behavior of continuous RC beam specimens strengthened with fabric-reinforced cementitious matrix (FRCM) composites through experimental testing and numerical modeling. A total of nine two-span RC beam specimens were constructed and tested. Test parameters included the type of FRCM (carbon (C-FRCM) and polyparaphenylene benzobisoxazole (PBO-FRCM), location of strengthening (sagging and hogging regions) and number of FRCM layers (two and four layers). Test results indicated that sagging strengthening resulted in a strength gain in the range of 17 to 29%, whereas hogging strengthening increased the load capacity by 9 to 17%. The use of C-FRCM resulted in a higher strength gain than that provided by PBO-FRCM composites. Specimens strengthened with PBO-FRCM exhibited, however, higher ductility and deformational capacity than those of their counterparts strengthened with C-FRCM. Doubling the number of FRCM layers resulted in no or insignificant increase in the load capacity but reduced the beam ductility. Specimens strengthened in the sagging regions exhibited moment redistribution ratios of 13 to 26% between the hogging and sagging regions. Insignificant moment redistribution was recorded for the specimens strengthened in the hogging region. Three-dimensional (3D) numerical simulation models, with and without an interfacial bond-slip law at the fabric–matrix interface, were developed. The inclusion of the bond-slip law in the modeling had an insignificant effect on predicted response. Although the models tended to underestimate the deflection, the predicted load capacities were within a 12% error band. Numerical findings were in agreement with those obtained from laboratory testing.


2021 ◽  
Vol 16 (59) ◽  
pp. 49-61
Author(s):  
Zhengbing Xia ◽  
Xiaofang Duan

In order to promote the application of steel fiber recycled concrete in projects such as roads and bridges, 25 groups of steel fiber recycled concrete with different mix proportions were designed, taking the replacement rate of recycled aggregate and the volume fraction of steel fibers as experimental parameters, and 77 steel bars and steel fiber recycled concrete bonded specimens were made and pasted with strain gauges for the pull-out test. The research results showed that the greater the replacement rate of recycled aggregates was, the lower the bond strength between steel bars and steel fiber recycled concrete was; in the range of 0~1.2%, the higher the mixing amount of steel fibers was, the greater the bond strength of the specimen was; in the range of 0~1.6%, the higher the mixing amount of steel fibers was, the greater the slip value of the specimen under the peak load was; the addition of steel fibers improved the failure behavior of the recycled concrete pull-out specimens; the test specimens mainly had pull-out failure when the mixing amount of steel fibers was 1.2% and 1.6%. Finally, this study modified the bond-slip constitutive relationship model of steel and steel fiber recycled concrete, analyzed the influence of the replacement rate of recycled aggregate and the mix proportion of steel fibers on its bonding performance, and compared the results with the test results. The results demonstrate that the test curve is in good agreement with the fitted curve, which can provide theoretical support for engineering applications. 


2021 ◽  
Vol 8 ◽  
Author(s):  
Jie Xiao ◽  
Xiang Long ◽  
Ming Ye ◽  
Haibo Jiang ◽  
Lingfei Liu ◽  
...  

The bond performance between steel bar and cement-based materials was the prerequisite for the two materials to work together, and previous studies showed that the bond behavior of the steel bars and cement-based materials will vary with the kinds of cement-based materials. For this reason, this paper adopted 12 direct pullout test specimens including three types of concrete and two types of steel bars. The strain of the steel bar at six measuring points was measured with a strain gauge. Based on the measured strain and free end slip of the steel bars, the distribution of steel stress, bond stress, and relative slip and the bond slip relation along the anchorage length were obtained and analyzed for different concrete and different steel bars. Based on these test results of steel strain and relative slip at six measuring points, the anchorage position function could be established in consideration of anchorage position, which was conducive to the establishment of an accurate bond–slip relationship. In addition, the anchorage length of the steel bar in Engineered Cementitious Composites (ECC) calculated from the equilibrium equation of critical limit state is only half of the anchorage length calculated in the current Code for Design of Concrete Structures (GB 50010-2010) in China. It is suggested to establish the critical anchorage length formula suitable for ECC in future studies.


Sign in / Sign up

Export Citation Format

Share Document