hek cells
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 32)

H-INDEX

32
(FIVE YEARS 1)

2021 ◽  
Vol 08 ◽  
Author(s):  
Sumbla Sheikh ◽  
Alexander Sturzu ◽  
Hubert Kalbacher ◽  
Thomas Nägele ◽  
Ulrike Ernemann ◽  
...  

Background: In the study of bioactive agents from traditional medicine, mono- and sesquiterpenes represent the main ingredients of essential oils. Till now, only thymoquinone and perillyl alcohol have been clinically tested on glioblastoma. Objective: In the present study, we examined the effect of ten different essential oils on three human glioblastoma cell lines and one healthy human cell line. Methods: We used confocal laser scanning microscopy, flow cytometry, and cell growth analysis to evaluate cell morphology changes, membrane disruption effects, acute cytotoxicity and effects on the proliferation rate caused by the essential oils pinene, geraniol, eucalyptol, perillaldehyde, limonene, and linalool, perillyl alcohol, myrcene, bisabolol and valencene on human cells. Caspase 3/7 activity was measured to observe apoptosis induced by the essential oils. Results: We found that the cytotoxicity concentrations varied not only between different essential oils but also among different cell lines. Acute cytotoxicity of essential oils was based on cell membrane disruption and that HEK cells were affected to a much higher degree than the Glioblastoma cells. Vacuoles found in surviving glioblastoma cells appeared to be a factor in this effect. Conclusion: Caspase activity did not correlate with the membrane damage observed in the flow cytometry experiments. This is especially evident in the HEK cells that only showed apoptosis with two out of ten essential oils.


Author(s):  
Shammy Raj ◽  
Lei Lu ◽  
Larry D. Unsworth
Keyword(s):  

2021 ◽  
Vol 14 ◽  
Author(s):  
Meghyn A. Welch ◽  
Leslie-Anne R. Jansen ◽  
Deborah J. Baro

Kv4 α-subunits exist as ternary complexes (TC) with potassium channel interacting proteins (KChIP) and dipeptidyl peptidase-like proteins (DPLP); multiple ancillary proteins also interact with the α-subunits throughout the channel’s lifetime. Dynamic regulation of Kv4.2 protein interactions adapts the transient potassium current, IA, mediated by Kv4 α-subunits. Small ubiquitin-like modifier (SUMO) is an 11 kD peptide post-translationally added to lysine (K) residues to regulate protein–protein interactions. We previously demonstrated that when expressed in human embryonic kidney (HEK) cells, Kv4.2 can be SUMOylated at two K residues, K437 and K579. SUMOylation at K437 increased surface expression of electrically silent channels while SUMOylation at K579 reduced IA maximal conductance (Gmax) without altering surface expression. KChIP and DPLP subunits are known to modify the pattern of Kv4.2 post-translational decorations and/or their effects. In this study, co-expressing Kv4.2 with KChIP2a and DPP10c altered the effects of enhanced Kv4.2 SUMOylation. First, the effect of enhanced SUMOylation was the same for a TC containing either the wild-type Kv4.2 or the mutant K437R Kv4.2, suggesting that either the experimental manipulation no longer enhanced K437 SUMOylation or K437 SUMOylation no longer influenced Kv4.2 surface expression. Second, instead of decreasing IA Gmax, enhanced SUMOylation at K579 now produced a significant ∼37–70% increase in IA maximum conductance (Gmax) and a significant ∼30–50% increase in Kv4.2g surface expression that was accompanied by a 65% reduction in TC internalization. Blocking clathrin-mediated endocytosis (CME) in HEK cells expressing the Kv4.2 TC mimicked and occluded the effect of SUMO on IA Gmax; however, the amount of Kv4.2 associated with the major adaptor for constitutive CME, adaptor protein 2 (AP2), was not SUMO dependent. Thus, SUMOylation reduced Kv4.2 internalization by acting downstream of Kv4.2 recruitment into clathrin-coated pits. In sum, the two major findings of this study are: SUMOylation of Kv4.2 at K579 regulates TC internalization most likely by promoting channel recycling. Additionally, there is a reciprocity between Kv4.2 SUMOylation and the Kv4.2 interactome such that SUMOylation regulates the interactome and the interactome influences the pattern and effect of SUMOylation.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A896-A896
Author(s):  
Chuck Hay ◽  
Mary Faber ◽  
Kemi Adeyanju ◽  
Jeffrey Medin

BackgroundMultiple myeloma is a cancer of plasma cells, wherein the plasma cells begin outgrowing and even suppressing the growth of normal hematopoietic-lineage cells in the blood marrow. It is estimated that nearly 35,000 new cases of multiple myeloma will be diagnosed each year, and over 12,000 individuals will die from multiple myeloma in 2021. The current overall 5-year survival rate of 54% stresses the need for alternative treatment strategies. A chimeric antigen receptor T cell (CAR-T) therapy that targets multiple myeloma surface proteins may have the potential to improve this survival rate.MethodsA commonly associated multiple myeloma antigen was selected, and the extracellular domain of the protein was expressed in an Expi293 cell culture system. The multiple myeloma protein was expressed with and purified by a Hisx6 tag. The purified protein was used to pan a specific scFv phage display library that was generated uniquely for our lab from multiple blood donors. Several clones were identified and sequenced. One clone was selected and verified to be capable of binding the multiple myeloma antigen via ELISA. This anti-multiple myeloma scFv was then subcloned into CAR-T plasmids. This is a second-generation CAR-T using a 4-1BB co-stimulator domain and a CD3ζ intracellular signaling domain was used for this therapy. Further, a cell-fate control gene, LNGFRΔTmpk, was added to the plasmid to combat potential graft versus host disease. CAR-T and lentivirus (LV) plasmids were transfected into HEK cells to produce anti-multiple myeloma CAR-T LV.ResultsThe anti-multiple myeloma CAR LV was transduced into HEK cells and titered via qPCR, which showed the LV prep produced 3.1E8 IU/ml. qPCR also showed there to be 0.407 vector copies per cell on average when using an MOI of 3. Our CAR-T LV was then used to transduce Jurkat cells at an MOI of 3. Using anti-Fab and anti-protein L antibodies, the transduced cells were shown to be expressing the anti- multiple myeloma CAR-T by flow cytometry. After confirming successful transduction and expression, transduced Jurkats (and controls) were co-cultured with multiple myeloma cell lines and incubated for 24 hours. ELISA testing for IFN-γ was performed on the resulting supernatants; specific engagement was demonstrated.ConclusionsThese results show that our anti-multiple myeloma CAR is successfully expressed and is functional. Our future goal is to successfully transduce our anti-multiple myeloma CAR LV into primary T cells and test for functionality in these cells before transitioning into in vivo models.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qiong Wang ◽  
Yan Wang ◽  
Shuang Yang ◽  
Changyi Lin ◽  
Lateef Aliyu ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus utilizes the extensively glycosylated spike (S) protein protruding from the viral envelope to bind to angiotensin-converting enzyme-related carboxypeptidase (ACE2) as its primary receptor to mediate host-cell entry. Currently, the main recombinant S protein production hosts are Chinese hamster ovary (CHO) and human embryonic kidney (HEK) cells. In this study, a recombinant S protein truncated at the transmembrane domain and engineered to express a C-terminal trimerization motif was transiently produced in CHO and HEK cell suspensions. To further evaluate the sialic acid linkages presenting on S protein, a two-step amidation process, employing dimethylamine and ammonium hydroxide reactions in a solid support system, was developed to differentially modify the sialic acid linkages on the glycans and glycopeptides from the S protein. The process also adds a charge to Asp and Glu which aids in ionization. We used MALDI-TOF and LC-MS/MS with electron-transfer/higher-energy collision dissociation (EThcD) fragmentation to determine global and site-specific N-linked glycosylation patterns. We identified 21 and 19 out of the 22 predicted N-glycosites of the SARS-CoV-2 S proteins produced in CHO and HEK, respectively. It was found that the N-glycosite at 1,158 position (N1158) and at 122, 282 and 1,158 positions (N122, N282 and N1158) were absent on S from CHO and HEK cells, respectively. The structural mapping of glycans of recombinant human S proteins reveals that CHO-Spike exhibits more complex and higher sialylation (α2,3-linked) content while HEK-Spike exhibits more high-mannose and a small amount of α2,3- and α2,6-linked sialic acids. The N74 site represents the most abundant glycosite on both spike proteins. The relatively higher amount of high-mannose abundant sites (N17, N234, N343, N616, N709, N717, N801, and N1134) on HEK-Spike suggests that glycan-shielding may differ among the two constructs. HEK-Spike can also provide different host immune system interaction profiles based on known immune system active lectins. Collectively, these data underscore the importance of characterizing the site-specific glycosylation of recombinant human spike proteins from HEK and CHO cells in order to better understand the impact of the production host on this complex and important protein used in research, diagnostics and vaccines.


2021 ◽  
Vol 22 (18) ◽  
pp. 9739 ◽  
Author(s):  
Ulla Seibel-Ehlert ◽  
Nicole Plank ◽  
Asuka Inoue ◽  
Guenther Bernhardt ◽  
Andrea Strasser

G protein activation represents an early key event in the complex GPCR signal transduction process and is usually studied by label-dependent methods targeting specific molecular events. However, the constrained environment of such “invasive” techniques could interfere with biological processes. Although histamine receptors (HRs) represent (evolving) drug targets, their signal transduction is not fully understood. To address this issue, we established a non-invasive dynamic mass redistribution (DMR) assay for the human H1–4Rs expressed in HEK cells, showing excellent signal-to-background ratios above 100 for histamine (HIS) and higher than 24 for inverse agonists with pEC50 values consistent with literature. Taking advantage of the integrative nature of the DMR assay, the involvement of endogenous Gαq/11, Gαs, Gα12/13 and Gβγ proteins was explored, pursuing a two-pronged approach, namely that of classical pharmacology (G protein modulators) and that of molecular biology (Gα knock-out HEK cells). We showed that signal transduction of hH1–4Rs occurred mainly, but not exclusively, via their canonical Gα proteins. For example, in addition to Gαi/o, the Gαq/11 protein was proven to contribute to the DMR response of hH3,4Rs. Moreover, the Gα12/13 was identified to be involved in the hH2R mediated signaling pathway. These results are considered as a basis for future investigations on the (patho)physiological role and the pharmacological potential of H1–4Rs.


2021 ◽  
Vol 22 (17) ◽  
pp. 9658
Author(s):  
Tim N. Koepp ◽  
Alexander Tokaj ◽  
Pavel I. Nedvetsky ◽  
Ana Carolina Conchon Costa ◽  
Beatrice Snieder ◽  
...  

The renal secretory clearance for organic cations (neurotransmitters, metabolism products and drugs) is mediated by transporters specifically expressed in the basolateral and apical plasma membrane domains of proximal tubule cells. Here, human organic cation transporter 2 (hOCT2) is the main transporter for organic cations in the basolateral membrane domain. In this study, we stably expressed hOCT2 in Madin-Darby Canine Kidney (MDCK) cells and cultivated these cells in the presence of an extracellular matrix to obtain three-dimensional (3D) structures (cysts). The transport properties of hOCT2 expressed in MDCK cysts were compared with those measured using human embryonic kidney cells (HEK293) stably transfected with hOCT2 (hOCT2-HEK cells). In the MDCK cysts, hOCT2 was expressed in the basolateral membrane domain and showed a significant uptake of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+) with an affinity (Km) of 3.6 ± 1.2 µM, similar to what was measured in the hOCT2-HEK cells (Km = 3.1 ± 0.2 µM). ASP+ uptake was inhibited by tetraethylammonium (TEA+), tetrapentylammonium (TPA+), metformin and baricitinib both in the hOCT2-HEK cells and the hOCT2- MDCK cysts, even though the apparent affinities of TEA+ and baricitinib were dependent on the expression system. Then, hOCT2 was subjected to the same rapid regulation by inhibition of p56lck tyrosine kinase or calmodulin in the hOCT2-HEK cells and hOCT2- MDCK cysts. However, inhibition of casein kinase II regulated only activity of hOCT2 expressed in MDCK cysts and not in HEK cells. Taken together, these results suggest that the 3D cell culture model is a suitable tool for the functional analysis of hOCT2 transport properties, depending on cell polarization.


2021 ◽  
Vol 15 ◽  
Author(s):  
Rebecca E. Roberts ◽  
Jothi Kumar Yuvaraj ◽  
Martin N. Andersson

Insect odorant receptor (OR) genes are routinely expressed in Human Embryonic Kidney (HEK) 293 cells for functional characterization (“de-orphanization”) using transient or stable expression. However, progress in this research field has been hampered because some insect ORs are not functional in this system, which may be due to insufficient protein levels. We investigated whether codon optimization of insect OR sequences for expression in human cells could facilitate their functional characterization in HEK293 cells with stable and inducible expression. We tested the olfactory receptor co-receptor (Orco) proteins from the bark beetles Ips typographus (“Ityp”) and Dendroctonus ponderosae (“Dpon”), and six ItypORs previously characterized in Xenopus laevis oocytes and/or HEK cells. Western blot analysis indicated that codon optimization yielded increased cellular protein levels for seven of the eight receptors. Our experimental assays demonstrated that codon optimization enabled functional characterization of two ORs (ItypOR25 and ItypOR29) which are unresponsive when expressed from wildtype (non-codon optimized) genes. Similar to previous Xenopus oocyte recordings, ItypOR25 responded primarily to the host/conifer monoterpene (+)-3-carene. ItypOR29 responded primarily to (+)-isopinochamphone and similar ketones produced by fungal symbionts and trees. Codon optimization also resulted in significantly increased responses in ItypOR49 to its pheromone ligand (R)-(−)-ipsdienol, and improved responses to the Orco agonist VUAA1 in ItypOrco. However, codon optimization did not result in functional expression of DponOrco, ItypOR23, ItypOR27, and ItypOR28 despite higher protein levels as indicated by Western blots. We conclude that codon optimization may enable or improve the functional characterization of insect ORs in HEK cells, although this method is not sufficient for all ORs that are not functionally expressed from wildtype genes.


2021 ◽  
Vol 22 (12) ◽  
pp. 6349
Author(s):  
Noriyuki Hatano ◽  
Masaki Matsubara ◽  
Hiroka Suzuki ◽  
Yukiko Muraki ◽  
Katsuhiko Muraki

Intracellular free zinc ([Zn2+]i) is mobilized in neuronal and non-neuronal cells under physiological and/or pathophysiological conditions; therefore, [Zn2+]i is a component of cellular signal transduction in biological systems. Although several transporters and ion channels that carry Zn2+ have been identified, proteins that are involved in Zn2+ supply into cells and their expression are poorly understood, particularly under inflammatory conditions. Here, we show that the expression of Zn2+ transporters ZIP8 and ZIP14 is increased via the activation of hypoxia-induced factor 1α (HIF-1α) in inflammation, leading to [Zn2+]i accumulation, which intrinsically activates transient receptor potential ankyrin 1 (TRPA1) channel and elevates basal [Zn2+]i. In human fibroblast-like synoviocytes (FLSs), treatment with inflammatory mediators, such as tumor necrosis factor-α (TNF-α) and interleukin-1α (IL-1α), evoked TRPA1-dependent intrinsic Ca2+ oscillations. Assays with fluorescent Zn2+ indicators revealed that the basal [Zn2+]i concentration was significantly higher in TRPA1-expressing HEK cells and inflammatory FLSs. Moreover, TRPA1 activation induced an elevation of [Zn2+]i level in the presence of 1 μM Zn2+ in inflammatory FLSs. Among the 17 out of 24 known Zn2+ transporters, FLSs that were treated with TNF-α and IL-1α exhibited a higher expression of ZIP8 and ZIP14. Their expression levels were augmented by transfection with an active component of nuclear factor-κB P65 and HIF-1α expression vectors, and they could be abolished by pretreatment with the HIF-1α inhibitor echinomycin (Echi). The functional expression of ZIP8 and ZIP14 in HEK cells significantly increased the basal [Zn2+]i level. Taken together, Zn2+ carrier proteins, TRPA1, ZIP8, and ZIP14, induced under HIF-1α mediated inflammation can synergistically change [Zn2+]i in inflammatory FLSs.


Sign in / Sign up

Export Citation Format

Share Document