water use efficiencies
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 16)

H-INDEX

21
(FIVE YEARS 2)

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1496
Author(s):  
Srinivasa R. Pinnamaneni ◽  
Saseendran S. Anapalli ◽  
Daniel K. Fisher ◽  
Krishna N. Reddy

Introducing alternative cultivars with enhanced water use efficiencies can help alleviate pressure on groundwater for crop irrigations in Mississippi (MS) Delta. A two-year field study was conducted in 2019–2020 to compare the water use efficiencies (WUE) of recently released and pre-released soybean {Glycine max (L.) Merr.} cultivars in maturity group (MG) III (‘P37A78’, ‘LG03-4561-14’), IV (‘Dyna-gro 4516x’, ‘DS25-1, DT97-4290’), and V (‘S12-1362’, ‘S14-16306’) in the MS Delta. The experimental design was a split-plot with cultivar as the first factor and the second factor was water variant irrigation (IR) and no irrigation (RF, rainfed), replicated three times. The MG IV cultivar Dyna-gro 4516x recorded the highest grain yield and WUE: grain yields were 4.58 Mg ha−1 and 3.89 Mg ha−1 under IR and RF, respectively in 2019, and 4.74 Mg ha−1 and 4.35 Mg ha−1 in 2020. The WUE were 7.2 and 6.9 kg ha−1 mm−1, respectively, in 2019 under IR and RF, and 13.4 and 16.9 kg ha−1 mm−1 in 2020. The data reveals that ‘Dyna-gro 4516x’ (MG IV), ‘LG03-4561-14’ (MG III), and ‘P37A78’ (MG III) are best adapted to the early soybean production system (ESPS) in MS Delta region for sustainable production for conserving water resources.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kevin Z. Mganga ◽  
Eric Kaindi ◽  
Aphaxard J. N. Ndathi ◽  
Luwieke Bosma ◽  
Theophilus Kioko ◽  
...  

Degradation characterized by depleted vegetation cover is a serious environmental problem in African rangelands. It poses a serious threat to millions of pastoralists and agropastoralists who depend on livestock as a source of livelihood. Consequently, there has been a growing global interest to consolidate efforts to restore degraded ecosystems. For example, the UN decade of Ecosystem Restoration initiative aims at uniting the world behind a common goal of preventing, halting and reversing the degradation of ecosystems. Grass reseeding using native perennial species has been identified as one of the practical ecological strategies for restoring degraded African rangelands, enhancing vegetation cover and forage production. Knowledge of the multifaceted performance of African rangeland grasses in terms of morphoecological traits, interaction with weeds and water use efficiencies is however largely limited and often elusive. Perennial grasses indigenous to African rangelands Cenchrus ciliaris L. (African foxtail grass), Enteropogon macrostachyus (Hochst. Ex A. Rich.) Monro ex Benth. (Bush rye grass) and Eragrostis superba Peyr. (Maasai love grass), were established in an African semi-arid rangeland under natural conditions to fill this knowledge gap. Morphoecological plant traits: aboveground biomass (shoot, leaf and stem) production, plant densities, basal cover, tiller densities and plant height were measured 9 months after establishment. Interaction between the target grass species and weeds and water use efficiencies (WUE) were also determined. Enteropogon macrostachyus displayed significantly higher values for plant densities, tiller densities and basal cover, indices commonly used to estimate the potential of grasses for ecological restoration. Eragrostis superba produced the highest shoot biomass and water use efficiencies. This is attributed to its higher leafy biomass fraction. Higher aboveground biomass production of E. superba demonstrate its suitability for enhancing rangeland productivity. Cenchrus ciliaris suppressed the weeds. This is linked to its aggressive and allelopathic nature. In conclusion, the three perennial grasses displayed distinct morphoecological traits. In order to achieve successful seed-based restoration of degraded African rangelands using native perennial grasses, careful selection species to maximize on their unique traits is recommended. Ultimately, this selection process should match the desired restoration outcomes and subsequent use of the rangeland.


2020 ◽  
Vol 43 (17) ◽  
pp. 2590-2600
Author(s):  
Kholik Allanov ◽  
Akmal Shamsiev ◽  
Normat Durdiev ◽  
Mirzoolim Avliyakulov ◽  
Aziz Karimov ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1047
Author(s):  
Alice Mayer ◽  
Michele Rienzner ◽  
Sandra Cesari de Maria ◽  
Marco Romani ◽  
Alberto Lasagna ◽  
...  

In the published article [1] the authors noticed an error in the ‘Percolation or Capillary Rise’ values reported in Table 4, column 4, and wish to make the following correction to their paper [1]: Table 4 should be replaced with the following: Actual Evapotranspiration (mm) Irrigation (mm) Percolation (−) or Capillary Rise (+) (mm) WUE (%) Maize 449 620 (438, 705) −589 (−243, −732) 50 (61, 44) Irrigated poplar 348 300 (300, 300) −247 (−215, −252) 57 (50, 58) Rainfed poplar 487 0 −18 (+232, −57) 159 (149, 159) WDA rice 537 1394 (964, 1620) −1002 (−491, −1206) 34 (43, 29) WFL rice 592 1852 (1508, 2210) −1266 (−860, −1693) 28 (32, 23) [...]


2020 ◽  
Vol 246 ◽  
pp. 107698 ◽  
Author(s):  
Zhiyuan Yang ◽  
Na Li ◽  
Peng Ma ◽  
Yu Li ◽  
Rongping Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document