b cell responses
Recently Published Documents


TOTAL DOCUMENTS

867
(FIVE YEARS 198)

H-INDEX

67
(FIVE YEARS 11)

2022 ◽  
Vol 7 (67) ◽  
Author(s):  
Owen Jensen ◽  
Shubhanshi Trivedi ◽  
Jeremy D. Meier ◽  
Keke C. Fairfax ◽  
J. Scott Hale ◽  
...  

We identify a MAIT cell subset expressing T follicular helper markers and show the ability of MAIT cells to support B cell responses in the mucosa.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Aaruni Khanolkar

The SARS-CoV-2 pandemic is an unprecedented epochal event on at least two fronts. Firstly, in terms of the rapid spread and the magnitude of the outbreak, and secondly, on account of the equally swift response of the scientific community that has galvanized itself into action and has successfully developed, tested and deployed highly effective and novel vaccines in record time to combat the virus. The sophistication and diversification of the scientific toolbox we now have at our disposal has enabled us to interrogate both the breadth and the depth of the immune response to a degree that is unparalleled in recent memory. In terms of our understanding of what is critical to contain the virus and mitigate the effects the pandemic, neutralizing antibodies to SARS-CoV-2 garner most of the attention, however, it is essential to recognize that it is the quality and the fitness of the virus-specific T cell and B cell response that lays the foundation and the backdrop for an effective neutralizing antibody response. In this report, we will review some of the key findings that have helped define and delineate some of the essential attributes of T and B cell responses in the setting of SARS-CoV-2 infection.


2021 ◽  
Author(s):  
Manon Nayrac ◽  
Mathieu Dube ◽  
Geremy Sannier ◽  
Alexandre Nicolas ◽  
Lorie Marchitto ◽  
...  

Spacing of the BNT162b2 mRNA doses beyond 3 weeks raised concerns about vaccine efficacy. We longitudinally analyzed B cell, T cell and humoral responses to two BNT162b2 mRNA doses administered 16 weeks apart in 53 SARS-CoV-2 naive and previously-infected donors. This regimen elicited robust RBD-specific B cell responses whose kinetics differed between cohorts, the second dose leading to increased magnitude in naive participants only. While boosting did not increase magnitude of CD4+ T cell responses further compared to the first dose, unsupervised clustering analyses of single-cell features revealed phenotypic and functional shifts over time and between cohorts. Integrated analysis showed longitudinal immune component-specific associations, with early Thelper responses post-first dose correlating with B cell responses after the second dose, and memory Thelper generated between doses correlating with CD8 T cell responses after boosting. Therefore, boosting elicits a robust cellular recall response after the 16-week interval, indicating functional immune memory.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kenneth Green ◽  
Thomas R. Wittenborn ◽  
Cecilia Fahlquist-Hagert ◽  
Ewa Terczynska-Dyla ◽  
Nina van Campen ◽  
...  

Germinal centers (GCs) are induced microanatomical structures wherein B cells undergo affinity maturation to improve the quality of the antibody response. Although GCs are crucial to appropriate humoral responses to infectious challenges and vaccines, many questions remain about the molecular signals driving B cell participation in GC responses. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is an important mediator of type I interferon and proinflammatory cytokine responses during infection and cellular stress. Recent studies have reported important roles for STING in B cell responses, including an impact on GC B cells and downstream antibody responses, which could have great consequences for vaccine design and understanding STING-associated interferonopathies. GCs are also involved in untoward reactions to autoantigens in a plethora of autoimmune disorders, and it is generally thought that these responses coopt the mechanisms used in foreign antigen-directed GCs. Here, we set out to investigate the importance of the cGAS-STING pathway in autoreactive B cell responses. In a direct competition scenario in a murine mixed bone marrow chimera model of autoreactive GCs, we find that B cell intrinsic deficiency of cGAS, STING, or the type I interferon receptor IFNAR, does not impair GC participation, whereas Toll-like receptor (TLR)-7 deficiency mediates a near-complete block. Our findings suggest that physiological B cell responses are strictly sustained by signals linked to BCR-mediated endocytosis. This wiring of B cell signals may enable appropriate antibody responses, while at the same time restricting aberrant antibody responses during infections and in autoimmune or autoinflammatory settings.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Piyawan Kochayoo ◽  
Pattarawan Sanguansuttikul ◽  
Pongsakorn Thawornpan ◽  
Kittikorn Wangriatisak ◽  
John H. Adams ◽  
...  

Abstract Background Development of an effective vaccine against blood-stage malaria requires the induction of long-term immune responses. Plasmodium vivax Reticulocyte Binding Protein 1a (PvRBP1a) is a blood-stage parasite antigen which is associated with invasion of red blood cells and induces antibody responses. Thus, PvRBP1a is considered as a target for design of a blood-stage vaccine against vivax malaria. Methods Both cross-sectional and cohort studies were used to explore the development and persistence of long-lived antibody and memory B cell responses to PvRBP1a in individuals who lived in an area of low malaria endemicity. Antibody titers and frequency of memory B cells specific to PvRBP1a were measured during infection and following recovery for up to 12 months. Results IgG antibody responses against PvRBP1a were prevalent during acute vivax malaria, predominantly IgG1 subclass responses. High responders to PvRBP1a had persistent antibody responses for at least 12-month post-infection. Further analysis of high responder found a direct relation between antibody titers and frequency of activated and atypical memory B cells. Furthermore, circulating antibody secreting cells and memory B cells specific to PvRBP1a were generated during infection. The PvRBP1a-specific memory B cells were maintained for up to 3-year post-infection, indicating the ability of PvRBP1a to induce long-term humoral immunity. Conclusion The study revealed an ability of PvRBP1a protein to induce the generation and maintenance of antibody and memory B cell responses. Therefore, PvRBP1a could be considered as a vaccine candidate against the blood-stage of P. vivax.


2021 ◽  
Author(s):  
R. Camille Brewer ◽  
Nitya S. Ramadoss ◽  
Lauren J. Lahey ◽  
Shaghayegh Jahanbani ◽  
William H. Robinson ◽  
...  

2021 ◽  
Author(s):  
Ariel Spurrier ◽  
Jamie Jennings-Gee ◽  
Karen Haas

We previously described monophosphoryl lipid A (MPL) and synthetic cord factor, trehalose-6,6-dicorynomycolate (TDCM) significantly increases antibody (Ab) responses to T cell independent type 2 antigens (TI-2 Ags) in a manner dependent on B cell-intrinsic TLR4 expression as well as MyD88 and TRIF adapter proteins. Given the requirement for TRIF in optimal MPL/TDCM adjuvant effects and the capacity of MPL to drive type I IFN production, we aimed to investigate the extent to which adjuvant effects on TI-2 Ab responses depend on type I IFN receptor (IFNAR) signaling. We found IFNAR-/- mice had impaired early TI-2 Ag-induced B cell activation and expansion and that B cell-intrinsic type I IFN signaling on B cells was essential for normal antibody responses to TI-2 Ags, including haptenated Ficoll and the pneumococcal vaccine, Pneumovax23. However, MPL/TDCM significantly increased TI-2 IgM and IgG responses in IFNAR-/- mice. MPL/TDCM enhanced TI-2 Ab production primarily by activating innate B cells (B-1b and splenic CD23- B cells) as opposed to CD23+ enriched follicular B cells. In summary, our study highlights an important role for type I IFN in supporting early B cell responses to TI-2 Ags through B cell-expressed IFNAR, but nonetheless demonstrates an MPL/TDCM adjuvant significantly increases TI-2 Ab responses independently of type I IFN signaling and does so by predominantly supporting increased polysaccharide-specific Ab production by innate B cell populations.


Sign in / Sign up

Export Citation Format

Share Document