runge kutta
Recently Published Documents


TOTAL DOCUMENTS

3698
(FIVE YEARS 603)

H-INDEX

87
(FIVE YEARS 8)

Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Yasuhiro Takei ◽  
Yoritaka Iwata

A numerical scheme for nonlinear hyperbolic evolution equations is made based on the implicit Runge-Kutta method and the Fourier spectral method. The detailed discretization processes are discussed in the case of one-dimensional Klein-Gordon equations. In conclusion, a numerical scheme with third-order accuracy is presented. The order of total calculation cost is O(Nlog2N). As a benchmark, the relations between numerical accuracy and discretization unit size and that between the stability of calculation and discretization unit size are demonstrated for both linear and nonlinear cases.


2022 ◽  
Vol 16 (1) ◽  
pp. 72
Author(s):  
Zaileha Md Ali ◽  
Ezmir Faiz Mohd Puard ◽  
Muhamad Hariz Sudin ◽  
Nur Aziean Mohd Idris

Wastewater treatment is essential to preserve the ecosystem and to ensure water resources are uncontaminated. This paper presents the Lotka-Volterra model of nonlinear ordinary differential equations of the interaction between predator-prey and substrate. The dimensionless ordinary differential equations of the model are solved using the 4th Order Runge-Kutta method (RK4) in MATLAB®. This study discusses the behaviour parameters of predators, prey and substrate. The results are shown graphically for different values of each parameter. Hence, the biological reaction of clean water from the interaction of predator-prey and substrate in wastewater treatment is identified. The higher the concentration of prey, the faster the concentration of substrate reaches 0 with and without the natural death of prey. The clean water will be produced whenever the concentration of prey and the concentration of predator are in balance regardless of the natural death rate. Stability analysis using the Jacobian matrix at the equilibrium point is also performed to determine the stability of the system.


Author(s):  
Michelle Muniz ◽  
Matthias Ehrhardt ◽  
Michael Günther ◽  
Renate Winkler

AbstractIn this paper we present a general procedure for designing higher strong order methods for linear Itô stochastic differential equations on matrix Lie groups and illustrate this strategy with two novel schemes that have a strong convergence order of 1.5. Based on the Runge–Kutta–Munthe–Kaas (RKMK) method for ordinary differential equations on Lie groups, we present a stochastic version of this scheme and derive a condition such that the stochastic RKMK has the same strong convergence order as the underlying stochastic Runge–Kutta method. Further, we show how our higher order schemes can be applied in a mechanical engineering as well as in a financial mathematics setting.


2022 ◽  
Author(s):  
Siavash Hedayati Nasab ◽  
Jean-Sébastien Cagnone ◽  
Brian C. Vermeire

2022 ◽  
Vol 70 (3) ◽  
pp. 4803-4827
Author(s):  
R. Manjula Devi ◽  
M. Premkumar ◽  
Pradeep Jangir ◽  
Mohamed Abdelghany Elkotb ◽  
Rajvikram Madurai Elavarasan ◽  
...  

2022 ◽  
Vol 7 (4) ◽  
pp. 5634-5661
Author(s):  
M. Adams ◽  
◽  
J. Finden ◽  
P. Phoncharon ◽  
P. H. Muir

<abstract><p>The high quality COLSYS/COLNEW collocation software package is widely used for the numerical solution of boundary value ODEs (BVODEs), often through interfaces to computing environments such as Scilab, R, and Python. The continuous collocation solution returned by the code is much more accurate at a set of mesh points that partition the problem domain than it is elsewhere; the mesh point values are said to be superconvergent. In order to improve the accuracy of the continuous solution approximation at non-mesh points, when the BVODE is expressed in first order system form, an approach based on continuous Runge-Kutta (CRK) methods has been used to obtain a superconvergent interpolant (SCI) across the problem domain. Based on this approach, recent work has seen the development of a new, more efficient version of COLSYS/COLNEW that returns an error controlled SCI.</p> <p>However, most systems of BVODEs include higher derivatives and a feature of COLSYS/COLNEW is that it can directly treat such mixed order BVODE systems, resulting in improved efficiency, continuity of the approximate solution, and user convenience. In this paper we generalize the approach mentioned above for first order systems to obtain SCIs for collocation solutions of mixed order BVODE systems. The main contribution of this paper is the derivation of generalizations of continuous Runge-Kutta-Nyström methods that form the basis for SCIs for this more general problem class. We provide numerical results that (ⅰ) show that the SCIs are much more accurate than the collocation solutions at non-mesh points, (ⅱ) verify the order of accuracy of these SCIs, and (ⅲ) show that the cost of utilizing the SCIs is a small fraction of the cost of computing the collocation solution upon which they are based.</p></abstract>


2021 ◽  
Vol 47 (4) ◽  
pp. 1-26
Author(s):  
Patrick E. Farrell ◽  
Robert C. Kirby ◽  
Jorge Marchena-Menéndez

While implicit Runge–Kutta (RK) methods possess high order accuracy and important stability properties, implementation difficulties and the high expense of solving the coupled algebraic system at each time step are frequently cited as impediments. We present Irksome , a high-level library for manipulating UFL (Unified Form Language) expressions of semidiscrete variational forms to obtain UFL expressions for the coupled Runge–Kutta stage equations at each time step. Irksome works with the Firedrake package to enable the efficient solution of the resulting coupled algebraic systems. Numerical examples confirm the efficacy of the software and our solver techniques for various problems.


Sign in / Sign up

Export Citation Format

Share Document