rna binding domains
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 15)

H-INDEX

40
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yanzhou Zhang ◽  
Mahmoud Bassal ◽  
Daniel Friedrich ◽  
Simone Ummarino ◽  
Tom Verbiest ◽  
...  

C/EBPα has known to be a transcription factor that involved in Neutrophil differentiation for decades. However, exploring the Chromatin RNA Immunoprecipitation Sequencing (RIP), we discover that C/EBPα is a RNA binding protein mainly interacts with RNA introns. Structure study and RNA electrophoretic mobility shift assay (REMSA) show that C/EBPα interacts with RNA through two novel RNA binding domains distinct from its DNA binding domain. Mouse bone marrow transplantation and in vitro cytokine assay reveal that C/EBPα RNA binding is critical for Macrophage differentiation but not Neutrophil differentiation. Mechanically, RNA binding domains control specific gene transcription. In particular, PU.1 intron 4 RNA interacts with C/EBPα and recruit C/EBPα to its enhancer site, which facilitate PU.1 expression. Taken together, C/EBPα is demonstrated to be a RNA binding protein with unique function distinct from its DNA binding activity. Our finding transforms our knowledge of transcriptional regulation by transcription factor.


Author(s):  
Avdar San ◽  
Dario Palmieri ◽  
Anjana Saxena ◽  
Shaneen Singh

RNA binding proteins (RBPs) regulate many important cellular processes through their interactions with RNA molecules. RBPs are critical for post-transcriptional mechanisms keeping gene regulation in a fine equilibrium. Conversely, dysregulation of RBPs and RNA metabolism pathways is an established hallmark of tumorigenesis. Human nucleolin (NCL) is a multifunctional RBP that interacts with different types of RNA molecules, in part through its four RNA binding domains (RBDs). Particularly, NCL interacts directly with microRNAs (miRNAs) and is involved in their aberrant processing linked with many cancers, including breast cancer. Nonetheless, molecular details of the NCL-miRNA interaction remain obscure. In this study, we used an in silico approach to characterize how NCL targets miRNAs and whether this specificity is imposed by a definite RBD-interface. Here, we present structural models of NCL-RBDs and miRNAs, as well as predict scenarios of NCL- miRNA interactions generated using docking algorithms. Our study suggests a predominant role of NCL RBDs 3 and 4 (RBD3-4) in miRNA binding. We provide detailed analyses of specific motifs/residues at the NCL-substrate interface in both these RBDs and miRNAs. Finally, we propose that the evolutionary emergence of more than two RBDs in NCL in higher organisms coincides with its additional role/s in miRNA processing. Our study shows that RBD3-4 display sequence/structural determinants to specifically recognize miRNA precursor molecules. Moreover, the insights from this study can ultimately support the design of novel antineoplastic drugs aimed at regulating NCL-dependent biological pathways with a causal role in tumorigenesis.


2021 ◽  
Author(s):  
Avdar San ◽  
Dario Palmieri ◽  
Anjana Saxena ◽  
Shaneen Singh

RNA binding proteins (RBPs) regulate many important cellular processes through their interactions with RNA molecules. RBPs are critical for post-transcriptional mechanisms keeping gene regulation in a fine equilibrium. Conversely, dysregulation of RBPs and RNA metabolism pathways is an established hallmark of tumorigenesis. Human nucleolin (NCL) is a multifunctional RBP that interacts with different types of RNA molecules, in part through its four RNA binding domains (RBDs). Particularly, NCL interacts directly with microRNAs (miRNAs) and is involved in their aberrant processing linked with many cancers, including breast cancer. Nonetheless, molecular details of the NCL-miRNA interaction remain obscure. In this study, we used an in silico approach to characterize how NCL targets miRNAs and whether this specificity is imposed by a definite RBD-interface. Here, we present structural models of NCL RBDs and miRNAs, as well as predict scenarios of NCL- miRNA interactions generated using docking algorithms. Our study suggests a predominant role of NCL RBDs 3 and 4 (RBD3-4) in miRNA binding. We provide detailed analyses of specific motifs/residues at the NCL-substrate interface in both these RBDs and miRNAs. Finally, we propose that the evolutionary emergence of more than two RBDs in NCL in higher organisms coincides with its additional role/s in miRNA processing. Our study shows that RBD3-4 display sequence/structural determinants to specifically recognize miRNA precursor molecules. Moreover, the insights from this study can ultimately support the design of novel antineoplastic drugs aimed at regulating NCL-dependent biological pathways with a causal role in tumorigenesis.


2021 ◽  
Author(s):  
Vaishali ◽  
Lyudmila Dimitrova-Paternoga ◽  
Kevin Haubrich ◽  
Mai Sun ◽  
Anne Ephrussi ◽  
...  

AbstractRNA binding proteins (RBPs) take part in all steps of the RNA life cycle and are often essential for cell viability. Most RBPs have a modular organization and comprise a set of canonical RNA binding domains. However, in recent years a number of high-throughput mRNA interactome studies on yeast, mammalian cell lines and whole organisms have uncovered a multitude of novel mRNA interacting proteins that lack classical RNA binding domains. Whereas a few have been confirmed to be direct and functionally relevant RNA binders, biochemical and functional validation of RNA binding of most others is lacking. In this study, we employed a combination of NMR spectroscopy and biochemical studies to test the RNA binding properties of six putative RNA binding proteins. Half of the analysed proteins showed no interaction, whereas the other half displayed weak chemical shift perturbations upon titration with RNA. One of the candidates we found to interact weakly with RNA in vitro is Drosophila melanogaster End binding protein 1 (EB1), a master regulator of microtubule plus-end dynamics. Further analysis showed that EB1’s RNA binding occurs on the same surface as that with which EB1 interacts with microtubules. RNA immunoprecipitation and colocalization experiments suggest that EB1 is a rather non-specific, opportunistic RNA binder. Our data suggest that care should be taken when embarking on an RNA binding study involving these unconventional, novel RBPs, and we recommend initial and simple in vitro RNA binding experiments.


2021 ◽  
Author(s):  
Simon H. Stitzinger ◽  
Salma Sohrabi-Jahromi ◽  
Johannes Söding

AbstractNumerous cellular processes rely on the binding of proteins with high affinity to specific sets of RNAs. Yet most RNA binding domains display low specificity and affinity, to the extent that for most RNA-binding domains, the enrichment of the best binding motif measured by high-throughput RNA SELEX or RNA bind-n-seq is usually below 10-fold, dramatically lower than that of DNA-binding domains. Here, we develop a thermodynamic model to predict the binding affinity for proteins with any number of RNA-binding domains given the affinities of their isolated domains. For the four proteins in which affinities for individual domains have been measured the model predictions are in good agreement with experimental values. The model gives insight into how proteins with multiple RNA-binding domains can reach affinities and specificities orders of magnitude higher than their individual domains. Our results contribute towards resolving the conundrum of missing specificity and affinity of RNA binding proteins and underscore the need for bioinformatic methods that can learn models for multi-domain RNA binding proteins from high-throughput in-vitro and in-vivo experiments.


2020 ◽  
Author(s):  
Meixia Li ◽  
Zhicheng Zhang ◽  
Sam Balzarini ◽  
Bhavesh Parmar ◽  
Boonen Kurt ◽  
...  

Abstract BackgroundRNA binding proteins regulate gene expression at the post-transcriptional level by controlling the fate of RNA, in processes such as mRNA localization, translation, splicing and stability. The annotation of RNA binding proteins is mainly based on the well-known RNA binding domains and motifs. However, novel RNA binding proteins without such conventional domains have been identified in different species using in vivo RNA interactome capture. To find support for novel conserved RNA binding proteins in plants, we applied an optimized RNA interactome capture to the monocot model Brachypodium distachyon.ResultsWe provide experimental evidence for 203 RNA binding proteins isolated from Brachypodium shoot tissue and leaf mesophyll protoplasts, and grouped these into classic RNA binding proteins with recognizable RNA binding domains and motifs, and candidate RNA binding proteins without such domains. Compared to RNA binding proteins captured in Arabidopsis thaliana, candidate RNA binding proteins involved in carbon fixation and carbon metabolic pathways are highly conserved. We tried to validate the RNA binding proteins captured in this research through a silica-based method, but this method appears not efficient for plants. This may indicate that optimized methods to validate high throughout RNA binding proteome are required for plants.ConclusionsOur results provide classic and candidate RNA binding proteins in Brachypodium distachyon and conserved RNA binding proteins in flowering plants. Future functional characterization should point out what the significance of RNA binding is for the function of these proteins.


Cell Reports ◽  
2020 ◽  
Vol 32 (3) ◽  
pp. 107930 ◽  
Author(s):  
Nele Merret Hollmann ◽  
Pravin Kumar Ankush Jagtap ◽  
Pawel Masiewicz ◽  
Tanit Guitart ◽  
Bernd Simon ◽  
...  

Plant Gene ◽  
2020 ◽  
Vol 22 ◽  
pp. 100224
Author(s):  
In Sil Jeong ◽  
Midori Tabara ◽  
Toshiyuki Fukuhara ◽  
Hisashi Koiwa

Sign in / Sign up

Export Citation Format

Share Document