heterologous overexpression
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Vol 292 ◽  
pp. 110634
Author(s):  
Yunting Zhang ◽  
Shanlin Li ◽  
Yan Chen ◽  
Yongqiang Liu ◽  
Yuanxiu Lin ◽  
...  

Author(s):  
Mingyang Wang ◽  
Xiao Wang ◽  
Zhenyun Cheng

The heterologous overexpression states of prion proteins play a critical role in understanding the mechanisms of prion-related diseases. We report herein the identification of soluble monomer and complex states for a bakers’ yeast prion, Sup35, when expressed in E. coli. Two peaks are apparent with the elution of His-tagged Sup35 by imidazole from a Ni affinity column. Peak I contains Sup35 in both monomer and aggregated states. Sup35 aggregate is abbreviated as C-aggregate and includes a non-fibril complex comprising Sup35 aggregate-HSP90-Dna K, ATP synthase β unit (chain D), 30S ribosome subunit, and Omp F. The purified monomer and C-aggregate can remain stable for an extended period of time. Peak II contains Sup35 also in both monomer and aggregated (abbreviated as S-aggregate) states, but the aggregated states are caused by the formation of inter-Sup35 disulfide bonds. This study demonstrates that further assembly of Sup35 non-fibril C-aggregate can be interrupted by the chaperone repertoire system in E. coli.


Plant Science ◽  
2021 ◽  
pp. 111149
Author(s):  
Yetong Qi ◽  
Zhu Yang ◽  
Xinyuan Sun ◽  
Huan He ◽  
Lei Guo ◽  
...  

2021 ◽  
Author(s):  
Fang Wang ◽  
Peng Fang ◽  
Huiping Yan ◽  
Xiangzhuo Ji ◽  
Yunling Peng

Abstract The homeodomain leucine zipper (HD-Zip) IV transcription factor is indispensable in the response of plants to abiotic stress. Systematic studies have been carried out in Arabidopsis, rice and other species from which a series of stress resistance-related genes have been isolated. However, the function of the HD-Zip-IV protein in maize is not clear. In this study, we cloned the HD-Zip-IV gene ZmHDZIV13 and identified its function in the stress response. Our phylogenetic analysis showed that ZmHDZIV13 and AtHDG11 had high homology and might have similar functions. The heterologous overexpression of ZmHDZIV13 in Arabidopsis resulted in sensitivity to abscisic acid (ABA), salt tolerance during germination and drought tolerance in seedlings. Under drought stress, the transgenic Arabidopsis showed stronger drought resistance than the wild-type showed (control). The malondialdehyde content of ZmHDZIV13 transgenic plants was lower than that of the control, and the relative water content and proline content were significantly higher than those of the control. After the drought was relieved, the expression of P5CS1, RD22, RD29B, RD29A, NCED3 and ERD1 were upregulated in transgenic Arabidopsis. Also, modified tobacco plants (35S::ZmHDZIV13) exhibited proper stomatal changes in response to drought conditions. These results show that ZmHDZIV13, as a stress-responsive transcription factor, plays a role in the positive regulation of abiotic stress tolerance and can regulate an ABA-dependent signaling pathway to regulate drought response in plants.


2020 ◽  
Vol 11 ◽  
Author(s):  
Bala P. Venkata ◽  
Robert Polzin ◽  
Rebecca Wilkes ◽  
Armahni Fearn ◽  
Dylan Blumenthal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document