granule proteins
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 44)

H-INDEX

48
(FIVE YEARS 7)

Blood ◽  
2021 ◽  
Author(s):  
Andrea L Ambrosio ◽  
Hallie P Febvre ◽  
Santiago Mauro Di Pietro

Platelet a-granules regulate hemostasis and myriad other physiological processes but their biogenesis is unclear. Mutations in only three proteins are known to cause a-granule defects and bleeding disorders in humans. Two such proteins, VPS16B and VPS33B, form a complex mediating transport of newly synthesized a-granule proteins through megakaryocyte endosomal compartments. It is unclear how the VPS16B/VPS33B complex accomplishes this function. Here we report VPS16B/VPS33B associates physically with Stx12, a SNARE protein that mediates vesicle fusion at endosomes. Importantly, Stx12 deficient megakaryocytes display reduced a-granule numbers and overall levels of a-granule proteins, thus revealing Stx12 as new component of the a-granule biogenesis machinery. VPS16B/VPS33B also binds CCDC22, a component of the CCC complex working at endosome exit sites. CCDC22 competes with Stx12 for binding to VPS16B/VPS33B suggesting a possible hand-off mechanism. Moreover, the major CCC form expressed in megakaryocytes contains COMMD3, one of ten COMMD proteins. Deficiency of COMMD3/CCDC22 causes reduced a-granule numbers and overall levels of a-granule proteins, establishing the COMMD3/CCC complex as a new factor in a-granule biogenesis. Furthermore, P-Selectin traffics through the cell surface in a COMMD3-dependent manner and depletion of COMMD3 results in lysosomal degradation of P-Selectin and PF4. Stx12 and COMMD3/CCC deficiency cause less severe phenotypes than VPS16B/VPS33B deficiency, suggesting Stx12 and COMMD3/CCC assist but are less important than VPS16B/VPS33B in a-granule biogenesis. Mechanistically, our results suggest VPS16B/VPS33B coordinates the endosomal entry and exit of a-granule proteins by linking the fusogenic machinery with a ubiquitous endosomal retrieval complex that is repurposed in megakaryocytes to make a-granules.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3138-3138
Author(s):  
Freda H. Passam ◽  
Angelina Lay ◽  
Alexander Dupuy ◽  
Jessica Tieng ◽  
Lejla Hagimola ◽  
...  

Abstract Background: Platelet hyperreactivity involves increased secretion of their granule content which promotes platelet aggregation and thrombosis. Platelet hyperreactivity is observed in conditions such as diabetes mellitus and is associated with decreased cardioprotective effect from antiplatelet agents in this patient group. Diabetes is associated with increased endoplasmic reticulum (ER) stress from hyperglycemia and hyperlipidemia. Protein disulphide isomerase 6 (PDIA6) is an endoplasmic reticulum protein which folds nascent proteins by reduction and oxidation of their disulphide bonds. PDIA6 has been shown to inhibit downstream ER stress pathways by inhibiting the phosphorylation of IRE-1 in fibroblasts (Eletto, Mol Cell, 2014). We hypothesized that ER stress pathways are functional in platelets and that PDIA6 may inhibit ER stress pathways leading to platelet secretion. Methods: We generated conditional PDIA6 knockout mice (PF4Cre+ Pdia6 fl/fl) (CKO) in the megakaryocyte/platelet lineage by CRISPR-Cas9 technology (Fig.1A). Megakaryopoiesis and haemostasis was assessed by bone marrow histology, coagulation assays, platelet aggregation and tail bleeding studies. We induced ER stress of purified platelets by incubation with thapsigargin and tunicamycin. Activation of the PERK and IRE1 pathways was measured by Western blot. Thrombosis was assessed in vitro by microfluidic devices and in vivo by electrolytic injury of the carotid artery. Results: PDIA6 CKO mice displayed a mild macrothrombocytopenia: the mean (+/-SD) platelet count in Pf4Cre+/Pdia6fl/fl was 775 +/- 98 x10 3/ul compared with 874 +/- 55 x10 3/ul in Pdia6fl/fl (p<0.005). The median platelet volume was 6.3 fL in Pf4Cre+/Pdia6fl/fl compared with 5.7 fL in Pdia6fl/fl (p<0.005). Megakaryopoiesis was normal at baseline. However, PDIA6 CKO mice showed significant upregulation of intracellular platelet PDIs including PDIA1, PDIA3 and PDIA4. PDIA6 deficient platelets displayed significant increase of disulphide reductase activity and the generation of free thiols on the platelet surface. Activation of the PERK and IRE-1 pathway at baseline and after induction of ER stress was increased in PDIA6 deficient platelets (Figure 1B, C). There was striking hypersecretion of PDIA1 (Figure 1D) and α-granule proteins (Figure 1E, F) in response to shear and stimulation with thrombin. PDIA6 CKO mice displayed a prothrombotic phenotype with increased platelet adhesion to fibrinogen under shear (500 s-1) and decreased time to carotid artery occlusion (mean+/SD: 10.8 +/-3.2 min in Pf4Cre+/Pdia6fl/fl compared with 15.3 +/-5.2 min in Pdia6fl/fl, n=8-10, p<0.05). Conclusion: We have identified a role for platelet PDIA6 in attenuating platelet ER stress and secretion. This opens avenues for further study into the role of platelet PDIs in conditions with increased ER stress, such as obesity and diabetes. Figure 1: PDIA6 deficient platelets have increased endoplasmic reticulum (ER) stress and are hypersecretory. A. Western blot of PDIA6 protein in platelets from Pf4Cre+/Pdia6fl/fl mice and control mice (Pdia6fl/fl) showing efficient deletion of PDIA6 in platelets. B. PDIA6 deficient platelets have increased phosphorylation of pEIF2a (PERK phosphorylation pathway) at baseline and after induction of ER stress by thapsigargin, representative image. C. Normalized band intensity (peIF2a/beta actin) in platelets treated with DMSO control or thapsigargin. D. Increased secretion of thiol isomerase PDIA1. E. alpha granule proteins: platelet factor 4 (PF4) and F. von Willebrand factor (vWF) from PDIA6 deficient platelets compared with controls after stimulation with thrombin 0.5 U/ml. n=3-5 Pf4Cre+/Pdia6fl/fl (red boxes) and n=3-5 Pdia6fl/fl mice (grey boxes). Columns are presented as mean+/-SD, *p<0.05, ** p<0.001 by Mann Whitney. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 190 ◽  
pp. 636-648
Author(s):  
Nemat Ali ◽  
Kartikay Prasad ◽  
Abdullah F. AlAsmari ◽  
Metab Alharbi ◽  
Summya Rashid ◽  
...  

2021 ◽  
Vol 14 (705) ◽  
Author(s):  
Androniqi Qifti ◽  
Lela Jackson ◽  
Ashima Singla ◽  
Osama Garwain ◽  
Suzanne Scarlata

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Congshan Yang ◽  
Chenrong Wang ◽  
Jing Liu ◽  
Qun Liu

Abstract Background Neospora caninum is an obligate intracellular parasite that invades host cells and replicates within the parasitophorous vacuole (PV), which resists fusion with host cell lysosomal compartments. To modify the PV, the parasite secretes an array of proteins, including dense granule proteins (GRAs). The vital role of GRAs in the Neospora life cycle cannot be overestimated. Despite this important role, only a subset of these proteins have been identified, and most of their functions have not been elucidated. Our previous study demonstrated that NcGRA17 is specifically targeted to the delimiting membrane of the parasitophorous vacuole membrane (PVM). In this study, we utilize proximity-dependent biotin identification (BioID) to identify novel components of the dense granules. Methods NcGRA17 was BirA* epitope-tagged in the Nc1 strain utilizing the CRISPR/Cas9 system to create a fusion of NcGRA17 with the biotin ligase BirA*. The biotinylated proteins were affinity-purified for mass spectrometric analysis, and the candidate GRA proteins from BioID data set were identified by gene tagging. To verify the biological role of novel identified GRA proteins, we constructed the NcGRA23 and NcGRA11 (a–e) knockout strains using the CRISPR/Cas9 system and analyzed the phenotypes of these mutants. Results Using NcGRA17-BirA* fusion protein as bait, we have identified some known GRAs and verified localization of 11 novel GRA proteins by gene endogenous tagging or overexpression in the Nc1 strain. We proceeded to functionally characterize NcGRA23 and NcGRA11 (a–e) by gene knockout. The lack of NcGRA23 or NcGRA11 (a–e) did not affect the parasite propagation in vitro and virulence in vivo. Conclusions In summary, our findings reveal that BioID is effective in discovering novel constituents of N. caninum dense granules. The exact biological functions of the novel GRA proteins are yet unknown, but this could be explored in future studies. Graphical abstract


Author(s):  
Hua Xiao ◽  
Michael M Vierling ◽  
Rana F Kennedy ◽  
Erin C Boone ◽  
Logan M Decker ◽  
...  

2021 ◽  
Vol 18 ◽  
Author(s):  
Anne Kasus-Jacobi ◽  
Jennifer L. Washburn ◽  
Craig A. Land ◽  
H. Anne Pereira

Background: A role for neutrophils in the pathogenesis of Alzheimer’s disease (AD) is emerging. We previously showed that the neutrophil granule proteins cationic antimicrobial protein of 37 kDa (CAP37), cathepsin G (CG), and neutrophil elastase (NE) directly bind the amyloid-beta peptide Aβ1-42, a central player in AD pathogenesis. CAP37, CG, and NE are serine proteases that can cleave Aβ1-42 at different sites and with different catalytic activities. Objective: In this study, we compared the effects of these three proteins on Aβ1-42 fibrillation and neurotoxicity. Methods: Using mass spectrometry and in vitro aggregation assay, we found that NE and CG effi- ciently cleave Aβ1-42. This cleavage correlates well with the inhibition of Aβ1-42 aggregation into fi- brils. In contrast, CAP37 did not efficiently cleave Aβ1-42, but was still able to inhibit its fibrillation, most likely through a quenching effect. Inhibition of Aβ1-42 aggregation by NE and CG neutralized its toxicity measured in cultured neurons. In contrast, inhibition of Aβ1-42 aggregation by CAP37 did not inhibit its neurotoxicity. Results: We found that a peptide derived from CAP37 could mimic the quenching and inhibition of Aβ1-42 aggregation effects of the full-length protein. Additionally, this peptide was able to inhibit the neurotoxicity of the most toxic Aβ1-42 aggregate, an effect that was not found with the full-length CAP37. Conclusion: These results shed light on the mechanisms of action of neutrophil granule proteins with regard to inhibition of Aβ1-42 aggregation and neurotoxicity and open up a possible strategy for the discovery of new disease-modifying drugs for AD.


Author(s):  
Hua Xiao ◽  
Michael M Vierling ◽  
Rana F Kennedy ◽  
Erin C Boone ◽  
Logan M Decker ◽  
...  

Abstract In Neurospora crassa, expression from an unpaired gene is suppressed by a mechanism known as meiotic silencing by unpaired DNA (MSUD). MSUD utilizes common RNA interference (RNAi) factors to silence target mRNAs. Here, we report that Neurospora CAR-1 and CGH-1, homologs of two Caenorhabditis elegans RNA granule components, are involved in MSUD. These fungal proteins are found in the perinuclear region and P-bodies, much like their worm counterparts. They interact with components of the meiotic silencing complex (MSC), including the SMS-2 Argonaute. This is the first time MSUD has been linked to RNA granule proteins.


Sign in / Sign up

Export Citation Format

Share Document