trailing vortices
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 15)

H-INDEX

33
(FIVE YEARS 2)

Author(s):  
Zepeng Cheng ◽  
Shiyan Zhang ◽  
Yang Xiang ◽  
Chun Shao ◽  
Miao Zhang ◽  
...  

2021 ◽  
Vol 11 (13) ◽  
pp. 5906
Author(s):  
Suyong Shin ◽  
Ji-Woo Hong ◽  
David Nagarathinam ◽  
Byoung-Kwon Ahn ◽  
Sung-Gun Park

Tip vortex cavitation is one of the most classical themes in fluid mechanics. Although many experimental and theoretical studies have been performed, unsolved problems still remain. In particular, the trailing vortices at the tip of the hydrofoil directly affects the hydrodynamic and acoustic performance of submerged objects such as the marine propeller, rudder and various foil-shaped appendages of the ship. In this study, the experimental results from the measurements of the vortex cavitation from the tip of two different three-dimensional hydrofoils are presented. Experiments have been carried out in Chungnam National University-Cavitation Tunnel (CNU-CT). By high speed imaging technique, the development process of vortex cavitation is observed in detail. Based on the high-speed images, physical features of the cavity inception and the swirling motion of the tip vortex cavity flow are examined. In addition, the induced noise characteristics in the vortex development process are examined by unsteady pressure measurements. The forces exerted on the hydrofoil were also measured using a dynamometer with a view to verify the scaling relation between the inception cavitation number and the non-dimensional parameters namely, the coefficient of lift, CL and the Reynolds number, Re. The results further shed light on the cause of the intense noise induced by tip vortex cavitation.


2021 ◽  
Vol 918 ◽  
Author(s):  
Siyi Qiu ◽  
Zepeng Cheng ◽  
Hui Xu ◽  
Yang Xiang ◽  
Hong Liu

Abstract


Author(s):  
Bilel Ben Amira ◽  
Mariem Ammar ◽  
Ahmad Kaffel ◽  
Zied Driss ◽  
Mohamed Salah Abid

This work is aimed at studying the hydrodynamic structure in a cylindrical stirred vessel equipped with an eight-curved blade turbine. Flow fields were measured by two-dimensional particle image velocimetry (PIV) to evaluate the effect of the curved blade turbine. Velocity field, axial and radial velocity distribution, root mean square (rms) of the velocity fluctuations, vorticity, and turbulent kinetic energy were presented. Therefore, two recirculation loops were formed close to the free surface and in the bottom of the tank. Moreover, the highest value area of the vorticity is localized in the upper region of the tank which follows the same direction of the first circulation loop. The turbulent kinetic energy is maximum at the blade tip following the trailing vortices.


2020 ◽  
Vol 908 ◽  
Author(s):  
Tobias Bölle ◽  
Vincent Brion ◽  
Jean-Christophe Robinet ◽  
Denis Sipp ◽  
Laurent Jacquin
Keyword(s):  

Abstract


Author(s):  
Mostafa Kazemi ◽  
Parisa Ghanooni ◽  
Mahmoud Mani ◽  
Mohammad Saeedi

In the current research, a series of different combinations of plasma SDBD actuators mounted on a simplified road vehicle have been experimentally studied to find the optimum position of the actuators for controlling the flow separation and reducing the vehicle form drag. Separation point of the flow over the rear ramp, large trailing vortices of the standard model, and laminar separation bubble (LSB) of the rear ramp leading edge are among the most significant factors to be controlled. The experiments were conducted at Reynolds numbers ranging from 0.55 × 106 to 1.11 × 106 in a subsonic wind tunnel while the pressure distribution over the model and its streamwise force balance were accurately measured. Significant drag reduction due to the use of DBD actuators was observed. As such, for the range of tested Reynolds numbers, a maximum of 25.1% of drag reduction in the vehicle drag coefficient could be achieved. The optimum combinations of activation voltages (6, 9, and 12 kV) and wave frequencies (6, 10, and 14 kHz) for plasma actuators were also found. Furthermore, it was observed that SDBD actuators mounted on the rear ramp of the model had a deeper impact on the vehicle drag coefficient compared to the other actuators.


Author(s):  
Tao Chen ◽  
Xiao Jiang ◽  
Haipeng Wang ◽  
Qian Li ◽  
Mingzhou Li ◽  
...  

In this paper, the numerical simulation was used to investigate the effects of the leading-edge slat installation angles ( β for airfoils from 0° to 40° and β1 for blades from −20° to 40°) on the aerodynamic characteristics of the airfoil and the wind turbine blade. The chord length of the leading-edge slat is 0.1c (the chord length of the clean airfoil). The horizontal and vertical distances from its center to the leading edge of the clean airfoil are 0.005c and 0.009c, respectively. The results indicated that the lift coefficient could be significantly improved by the leading-edge slat (except β = 40°) when the attack angle exceeded 10.2°. For β = 0°, the lift coefficient increased the most. The trailing vortex of the leading-edge slat played an important role at the process of flow control. It could transfer kinetic energy from the bounder layer to its out-flow region. Furthermore, the vorticities of trailing vortex generated by the leading-edge slat with different installation angles were different, promoting several effects on the airfoil at the different cases. The torque of the blade with leading-edge slat (except β1 = −20°) was improved significantly as the leading-edge slat trailing-vortices became stronger with the higher wind-speeds.


2020 ◽  
Vol 50 (7) ◽  
pp. 1839-1852
Author(s):  
Irina I. Rypina ◽  
Larry J. Pratt ◽  
Samuel Entner ◽  
Amanda Anderson ◽  
Deepak Cherian

AbstractThe Lagrangian characteristics of the surface flow field arising when an idealized, anticyclonic, mesoscale, isolated deep-ocean eddy collides with continental slope and shelf topography are explored. In addition to fluid parcel trajectories, we consider the trajectories of biological organisms that are able to navigate and swim, and for which shallow water is a destination. Of particular interest is the movement of organisms initially located in the offshore eddy, the manner in which the eddy influences the ability of the organisms to reach the shelf break, and the spatial and temporal distributions of organisms that do so. For nonswimmers or very slow swimmers, the organisms arrive at the shelf break in distinct pulses, with different pulses occurring at different locations along the shelf break. This phenomenon is closely related to the episodic formation of trailing vortices that are formed after the eddy collides with the continental slope, turns, and travels parallel to the coast. Analysis based on finite-time Lyapunov exponents reveals initial locations of all successful trajectories reaching the shoreline, and provides maps of the transport pathways showing that much of the cross-shelf-break transport occurs in the lee of the eddy as it moves parallel to the shore. The same analysis shows that the onshore transport is interrupted after a trailing vortex detaches. As the swimming speeds are increased, the organisms are influenced less by the eddy and tend to show up en mass and in a single pulse.


Sign in / Sign up

Export Citation Format

Share Document