anchoring protein
Recently Published Documents


TOTAL DOCUMENTS

483
(FIVE YEARS 66)

H-INDEX

66
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Flavia Ferrantelli ◽  
Chiara Chiozzini ◽  
Francesco Manfredi ◽  
Patrizia Leone ◽  
Massimo Spada ◽  
...  

SARS-CoV-2-specific CD8+ T cell immunity is expected to counteract viral variants in both efficient and durable ways. We recently described a way to induce a potent SARS-CoV-2 CD8+ T immune response through the generation of engineered extracellular vesicles (EVs) emerging from muscle cells. This method relies on intramuscular injection of DNA vectors expressing different SARS-CoV-2 antigens fused at their N-terminus with Nefmut protein, i.e., a very efficient EV-anchoring protein. However, quality, tissue distribution, and efficacy of these SARS-CoV-2-specific CD8+ T cells remained uninvestigated. To fill the gaps, antigen-specific CD8+ T lymphocytes induced by the immunization through the Nefmut-based method were characterized in terms of their polyfunctionality and localization at lung airways, i.e., the primary targets of SARS-CoV-2 infection. We found that injection of vectors expressing Nefmut/S1 and Nefmut/N generated polyfunctional CD8+ T lymphocytes in both spleens and bronchoalveolar lavage fluids (BALFs). When immunized mice were infected with 4.4 lethal doses 50% of SARS-CoV-2, all S1-immunized mice succumbed, whereas those developing the highest percentages of N-specific CD8+ T lymphocytes resisted the lethal challenge. We also provide evidence that the N-specific immunization coupled with the development of antigen-specific CD8+ T-resident memory cells in lungs, supporting the idea that the Nefmut-based immunization can confer a long-lasting, lung-specific immune memory. In view of the limitations of current anti-SARS-CoV-2 vaccines in terms of antibody waning and efficiency against variants, our CD8+ T cell-based platform could be considered for a new combination prophylactic strategy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jialan Lv ◽  
Zhicheng Pan ◽  
Jian Chen ◽  
Rui Xu ◽  
Dongfei Wang ◽  
...  

Background: Dilated cardiomyopathy (DCM) is a major cause of heart failure worldwide. The Z-line protein Cypher/Z-band alternatively spliced PDZ-motif protein (ZASP) is closely associated with DCM, both clinically and in animal models. Our earlier work revealed Cypher/ZASP as a PKA-anchoring protein (AKAP) that tethers PKA to phosphorylate target substrates. However, the downstream PKA effectors regulated by AKAP Cypher/ZASP and their relevance to DCM remain largely unknown.Methods and Results: For the identification of candidate PKA substrates, global quantitative phosphoproteomics was performed on cardiac tissue from wild-type and Cypher-knockout mice with PKA activation. A total of 216 phosphopeptides were differentially expressed in the Cypher-knockout mice; 31 phosphorylation sites were selected as candidates using the PKA consensus motifs. Bioinformatic analysis indicated that differentially expressed proteins were enriched mostly in cell adhesion and mRNA processing. Furthermore, the phosphorylation of β-catenin Ser675 was verified to be facilitated by Cypher. This phosphorylation promoted the transcriptional activity of β-catenin, and also the proliferative capacity of cardiomyocytes. Immunofluorescence staining demonstrated that Cypher colocalised with β-catenin in the intercalated discs (ICD) and altered the cytoplasmic distribution of β-catenin. Moreover, the phosphorylation of two other PKA substrates, vimentin Ser72 and troponin I Ser23/24, was suppressed by Cypher deletion.Conclusions: Cypher/ZASP plays an essential role in β-catenin activation via Ser675 phosphorylation, which modulates cardiomyocyte proliferation. Additionally, Cypher/ZASP regulates other PKA effectors, such as vimentin Ser72 and troponin I Ser23/24. These findings establish the AKAP Cypher/ZASP as a signalling hub in the progression of DCM.


Author(s):  
Cathrine Rein Carlson ◽  
Jan M Aronsen ◽  
Anna Bergan-Dahl ◽  
Marie Christine Moutty ◽  
Marianne Lunde ◽  
...  

Background: The sarcoplasmic reticulum (SR) Ca 2+ -ATPase 2 (SERCA2) mediates a 2+ -reuptake into SR and thereby promotes cardiomyocyte relaxation, whereas the ryanodine receptor (RYR) mediates a 2+ -release from SR and triggers contraction. a 2+ /calmodulin (CaM)-dependent protein kinase II (CaMKII) regulates activities of SERCA2 through phosphorylation of phospholamban (PLN) and RYR through direct phosphorylation. However, the mechanisms for CaMKIIδ anchoring to SERCA2-PLN and RYR and its regulation by local a 2+ -signals remain elusive. The objective of this study was to investigate CaMKIIδ anchoring and regulation at SERCA2-PLN and RYR. Methods: A role for A-kinase anchoring protein 18δ (AKAP18δ) in CaMKIIδ anchoring and regulation was analyzed by bioinformatics, peptide arrays, cell-permeant peptide technology, immunoprecipitations, pull-downs, transfections, immunoblotting, proximity ligation, FRET-based CaMKII activity and ELISA-based assays, whole cell and SR-vesicle fluorescence imaging, high-resolution microscopy, adenovirus transduction, adeno-associated virus injection, structural modeling, surface plasmon resonance and alpha screen technology. Results: Our results show that AKAP18δ anchors and directly regulates CaMKIIδ activity at SERCA2-PLN and RYR, via two distinct AKAP18δ regions. An N-terminal region (AKAP18δ-N) inhibited CaMKIIδ through binding of a region homologous to natural CaMKII inhibitor peptide and Thr17-PLN region. AKAP18δ-N also bound CaM, introducing a second level of control. Conversely, AKAP18δ-C, which shares homology to neuronal CaMKIIα activator peptide (N2B-s), activated CaMKIIδ by lowering the apparent a 2+ -threshold for kinase activation and inducing CaM trapping. While AKAP18δ-C facilitated faster a 2+ -reuptake by SERCA2 and a 2+ -release through RYR, AKAP18δ-N had opposite effects. We propose a model where the two unique AKAP18δ regions fine-tune a 2+ -frequency-dependent activation of CaMKIIδ at SERCA2-PLN and RYR. Conclusions: AKAP18δ anchors and functionally regulates CaMKII activity at PLN-SERCA2 and RYR, indicating a crucial role of AKAP18δ in regulation of the heartbeat. To our knowledge this is the first protein shown to enhance CaMKII activity in heart and also the first AKAP reported to anchor a CaMKII isoform, defining AKAP18δ also as a CaM-KAP.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2861
Author(s):  
Darko Maric ◽  
Aleksandra Paterek ◽  
Marion Delaunay ◽  
Irene Pérez López ◽  
Miroslav Arambasic ◽  
...  

Myocardial infarction (MI) is a leading cause of maladaptive cardiac remodeling and heart failure. In the damaged heart, loss of function is mainly due to cardiomyocyte death and remodeling of the cardiac tissue. The current study shows that A-kinase anchoring protein 2 (AKAP2) orchestrates cellular processes favoring cardioprotection in infarcted hearts. Induction of AKAP2 knockout (KO) in cardiomyocytes of adult mice increases infarct size and exacerbates cardiac dysfunction after MI, as visualized by increased left ventricular dilation and reduced fractional shortening and ejection fraction. In cardiomyocytes, AKAP2 forms a signaling complex with PKA and the steroid receptor co-activator 3 (Src3). Upon activation of cAMP signaling, the AKAP2/PKA/Src3 complex favors PKA-mediated phosphorylation and activation of estrogen receptor α (ERα). This results in the upregulation of ER-dependent genes involved in protection against apoptosis and angiogenesis, including Bcl2 and the vascular endothelial growth factor a (VEGFa). In line with these findings, cardiomyocyte-specific AKAP2 KO reduces Bcl2 and VEGFa expression, increases myocardial apoptosis and impairs the formation of new blood vessels in infarcted hearts. Collectively, our findings suggest that AKAP2 organizes a transcriptional complex that mediates pro-angiogenic and anti-apoptotic responses that protect infarcted hearts.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009832
Author(s):  
Shihai Zhang ◽  
Huanyu Wang ◽  
Chase H. Melick ◽  
Mi-Hyeon Jeong ◽  
Adna Curukovic ◽  
...  

The mammalian target of rapamycin complex 1 (mTORC1) senses multiple stimuli to regulate anabolic and catabolic processes. mTORC1 is typically hyperactivated in multiple human diseases such as cancer and type 2 diabetes. Extensive research has focused on signaling pathways that can activate mTORC1 such as growth factors and amino acids. However, less is known about signaling cues that can directly inhibit mTORC1 activity. Here, we identify A-kinase anchoring protein 13 (AKAP13) as an mTORC1 binding protein, and a crucial regulator of mTORC1 inhibition by G-protein coupled receptor (GPCR) signaling. GPCRs paired to Gαs proteins increase cyclic adenosine 3’5’ monophosphate (cAMP) to activate protein kinase A (PKA). Mechanistically, AKAP13 acts as a scaffold for PKA and mTORC1, where PKA inhibits mTORC1 through the phosphorylation of Raptor on Ser 791. Importantly, AKAP13 mediates mTORC1-induced cell proliferation, cell size, and colony formation. AKAP13 expression correlates with mTORC1 activation and overall lung adenocarcinoma patient survival, as well as lung cancer tumor growth in vivo. Our study identifies AKAP13 as an important player in mTORC1 inhibition by GPCRs, and targeting this pathway may be beneficial for human diseases with hyperactivated mTORC1.


2021 ◽  
Author(s):  
Mitchell H. Omar ◽  
Dominic P. Byrne ◽  
Kiana N. Jones ◽  
Tyler M. Lakey ◽  
Kerrie B. Collins ◽  
...  

Mutations in the catalytic subunit of protein kinase A (PKAc) drive the stress hormone disorder adrenal Cushing's syndrome. Here we define mechanisms of action for the PKAc-L205R and W196R variants. Both Cushing's mutants are excluded from A kinase anchoring protein (AKAP) signaling islands and consequently diffuse throughout the cell. Kinase-dead experiments show that PKA activity is required for cortisol hypersecretion. However, kinase activation is not sufficient, as only cAMP analog drugs that displace native PKAc from AKAPs enhance cortisol release. Rescue experiments that incorporate mutant PKAc into AKAP signaling islands abolish cortisol overproduction, indicating that kinase anchoring restores normal endocrine function. Phosphoproteomics show that PKAc-L205R and W196R engage different mitogenic signaling pathways. ERK activity is elevated in adrenal-specific PKAc-W196R knock-in mice. Conversely, PKAc-L205R attenuates Hippo signaling, thereby upregulating the YAP/TAZ transcriptional co-activators. Thus, aberrant localization of each Cushing's variant promotes the transmission of a distinct downstream pathogenic signal.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2690
Author(s):  
Fangfang Zhao ◽  
Huitong Zhou ◽  
Shaobin Li ◽  
Qingming An ◽  
Qian Fang ◽  
...  

The glycogen synthase kinase 3 beta (GSK3β)-interacting protein (encoded by the gene GSKIP) is a small A-kinase anchoring protein, which complexes with GSK3βand protein kinase A (PKA) and acts synergistically with cAMP/PKA signaling to inhibit GSK3β activity. The protein plays a role in regulating glycogen metabolism, protein synthesis, the cell cycle, and in regulating gene expression. In this study, PCR-single strand conformation polymorphism (PCR-SSCP) analyses were used to screen for variation in exon 1 and exon 2 of GSKIP in 840 New Zealand (NZ) Romney sheep. Two SSCP banding patterns representing two different nucleotide variants (A and B) were detected in an exon 1 region, whereas in an exon 2 region only one pattern was detected. Variants A and B of exon 1 had one non-synonymous nucleotide difference c.37A/G (p.Met13Val). The birthweight of sheep of genotype AA (5.9 ± 0.06 kg) was different (p = 0.023) to sheep of genotype AB (5.7 ± 0.06 kg) and BB (5.7 ± 0.06 kg). The hot carcass weight (HCW) of sheep of genotype AA (17.2 ± 0.22 kg) was different (p = 0.012) to sheep of genotype AB (17.6 ± 0.22 kg) and BB (18.0 ± 0.29 kg), and the fat depth at the 12th rib (V-GR) of sheep of genotype AA (7.7 ± 0.31 mm) was different (p = 0.016) to sheep of genotype AB (8.3 ± 0.30 mm) and BB (8.5 ± 0.39 mm). The results suggest that the c.37A/G substitution in ovine GSKIP may affect sheep growth and carcass traits.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Naveed Aslam

Rationale: Most likely, the overall myocyte cell growth during the pathological state of cardiac hypertrophy is regulated by a local muscle A-kinase anchoring protein β (mAKAPβ) complex. The mAKAPβ may act as a significant coordinator of myocyte hypertrophic signals. It may critically integrate the hypertrophic signals due to β-adrenergic and leukemia inhibitory factor (LIF)/gp-130 receptor stimulation. Observations suggest that mAKAPβ signalosome may act as a gate-keeper for regulating nuclear factor of activated T cells (NFATc) activity and nuclear localization of this complex might be directly linked to the induction of cardiac hypertrophy. The mAKAPβ complex might function through modulating the profiles of a local cyclic adenosine 3’,5’ monophosphate (cAMP) microdomain at perinuclear region in cardiomyocytes. The acute stimulation of cAMP may be beneficial for the heart, whereas chronic stimulation might cause damage. The transition between the chronic and acute function of cAMP is probably modulated by the ability of myocytes to tightly regulate the cAMP levels in local microdomains across the cell. Any dysfunction in this process may lead to net accumulation and a global rise of cAMP levels, leading to deleterious effects on the heart. Objective: cAMP is a single messenger but delivers multiple messages in myocytes. How is this managed? Here, we aim to investigate a key question that how mAKAPβ signalosome might ensure the microdomain specificity despite the pleiotropic nature of the second messenger. Methods and Results: Our results may explain how, in the context of hypertrophy, mAKAPβ complex coordinates the interactions between two coupled cAMP-induced feedback loops and LIF-induced activation of the MAPK pathway. Our results may also explain that mAKAPβ complex functions through anchoring protein kinase A (PKA) and ERK5 in the signalosome thus, modulating the bidirectional regulation of phosphodiesterase and hence the control of localized cAMP metabolism as well as the shape and temporal profile of the second messenger in a specific domain. Conclusion: Here, we propose a mechanistic model which suggests that stress-induced reprofiling of cAMP flux at discrete cellular locations may lead to cardiovascular disease.


2021 ◽  
Author(s):  
Mariusz Mucha ◽  
Alberto Labrador-Ramos ◽  
Benjamin Attwood ◽  
Malorzata Bajor ◽  
Jaison Kolenchery ◽  
...  

Severe stress can trigger complex behavioural changes such as high anxiety (1). Inhibitory GABA-ergic interneurons in the lateral division of the central amygdala (CEl) control anxiety through feedforward inhibition of their target cells in the medial division (CEm) (2, 3). In particular, PKCδ-positive (PKCδ+) interneurons in CEl are critical elements of the neuronal circuitry of fear and anxiety (3-5), but the molecular mechanisms they employ are poorly understood. Here, we show that, during stress, GABA-ergic synapses of amygdala PKCδ+ interneurons are regulated by a serine protease plasmin. On stress, plasmin cleaves the extracellular portion of the tyrosine kinase receptor EphA4 triggering its dissociation from gephyrin, a postsynaptic GABA-receptor anchoring protein. Dynamic EphA4/gephyrin interaction leads to modification of dendritic spine morphology and synaptic GABA-receptor expression profile. Consistent with the critical role for the plasmin/EphA4/gephyrin signalling axis in anxiogenesis, viral delivery of plasmin-resistant (prEphA4) form of EphA4 into the central amygdala prevents the development of stress-induced anxiety in mice, while the delivery of plasmin-truncated EphA4 (tEphA4) dramatically enhances this effect. Thus, our studies identify a novel, critical molecular cascade regulating GABA-ergic signalling in the central amygdala synapses that allows bidirectional switching of animal behaviour from high to low anxiety states.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2090
Author(s):  
Yangyang Bai ◽  
Rongrong Yuan ◽  
Yunyun Luo ◽  
Zihong Kang ◽  
Haijing Zhu ◽  
...  

The A-kinase anchoring protein 12 gene (AKAP12) is a scaffold protein, which can target multiple signal transduction effectors, can promote mitosis and cytokinesis and plays an important role in the regulation of growth and development. In our previous study, P1–7 bp (intron 3) and P2–13 bp (3′UTR) indels within the AKAP12 gene significantly influenced AKAP12 gene expression. Therefore, this study aimed to identify the association between these two genetic variations and growth-related traits in Shaanbei white cashmere goats (SBWC) (n = 1405). Herein, we identified two non-linkage insertions/deletions (indels). Notably, we found that the P1–7 bp indel mutation was related to the height at hip cross (HHC; p < 0.05) and the P2–13 bp indel was associated with body weight, body length, chest depth, chest width, hip width, chest circumference and cannon (bone) circumference in SBWC goats (p < 0.05). Overall, the two indels’ mutations of AKAP12 affected growth traits in goats. Compared to the P1–7 bp indel, the P2–13 bp indel is more suitable for the breeding of goat growth traits.


Sign in / Sign up

Export Citation Format

Share Document