isotopic evolution
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 39)

H-INDEX

47
(FIVE YEARS 4)

Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Adrien Vezinet ◽  
Emilie Thomassot ◽  
Yan Luo ◽  
Chiranjeeb Sarkar ◽  
D. Graham Pearson

In metamorphic rocks, mineral species react over a range of pressure–temperature conditions that do not necessarily overlap. Mineral equilibration can occur at varied points along the metamorphic pressure–temperature (PT) path, and thus at different times. The sole or dominant use of zircon isotopic compositions to constrain the evolution of metamorphic rocks might then inadvertently skew geological interpretations towards one aspect or one moment of a rock’s history. Here, we present in-situ U–Pb/Sm–Nd isotope analyses of the apatite crystals extracted from two meta-igneous rocks exposed in the Saglek Block (North Atlantic craton, Canada), an Archean metamorphic terrane, with the aim of examining the various signatures and events that they record. The data are combined with published U–Pb/Hf/O isotope compositions of zircon extracted from the same hand-specimens. We found an offset of nearly ca. 1.5 Gyr between U-Pb ages derived from the oldest zircon cores and apatite U–Pb/Sm–Nd isotopic ages, and an offset of ca. 200 Ma between the youngest zircon metamorphic overgrowths and apatite. These differences in metamorphic ages recorded by zircon and apatite mean that the redistribution of Hf isotopes (largely hosted in zircon) and Nd isotopes (largely hosted in apatite within these rocks), were not synchronous at the hand-specimen scale (≤~0.001 m3). We propose that the diachronous redistribution of Hf and Nd isotopes and their parent isotopes was caused by the different PT conditions of growth equilibration between zircon and apatite during metamorphism. These findings document the latest metamorphic evolution of the Saglek Block, highlighting the role played by intra-crustal reworking during the late-Archean regional metamorphic event.


2021 ◽  
pp. 120643
Author(s):  
Alessio Sanfilippo ◽  
Giulio Borghini ◽  
Luisa Guarnieri ◽  
Eizo Nakamura ◽  
Giovanni B. Piccardo ◽  
...  

Author(s):  
H.S. Moghadam ◽  
M. Kirchenbaur ◽  
Q.L. Li ◽  
D. Garbe‐Schönberg ◽  
F. Lucci ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. M. Chernonozhkin ◽  
C. González de Vega ◽  
N. Artemieva ◽  
B. Soens ◽  
J. Belza ◽  
...  

AbstractFractionation effects related to evaporation and condensation had a major impact on the current elemental and isotopic composition of the Solar System. Although isotopic fractionation of moderately volatile elements has been observed in tektites due to impact heating, the exact nature of the processes taking place during hypervelocity impacts remains poorly understood. By studying Fe in microtektites, here we show that impact events do not simply lead to melting, melt expulsion and evaporation, but involve a convoluted sequence of processes including condensation, variable degrees of mixing between isotopically distinct reservoirs and ablative evaporation during atmospheric re-entry. Hypervelocity impacts can as such not only generate isotopically heavy, but also isotopically light ejecta, with δ56/54Fe spanning over nearly 5‰ and likely even larger variations for more volatile elements. The mechanisms demonstrated here for terrestrial impact ejecta modify our understanding of the effects of impact processing on the isotopic evolution of planetary crusts.


2021 ◽  
Vol 176 (9) ◽  
Author(s):  
P. D. Kempton ◽  
A. Spence ◽  
H. Downes ◽  
J. Blichert-Toft ◽  
J. G. Bryce ◽  
...  

2021 ◽  
Vol 176 (7) ◽  
Author(s):  
P. D. Kempton ◽  
A. Spence ◽  
H. Downes ◽  
J. Blichert-Toft ◽  
J. G. Bryce ◽  
...  

AbstractMount Etna in NE Sicily occupies an unusual tectonic position in the convergence zone between the African and Eurasian plates, near the Quaternary subduction-related Aeolian arc and above the down-going Ionian oceanic slab. Magmatic evolution broadly involves a transition from an early tholeiitic phase (~ 500 ka) to the current alkaline phase. Most geochemical investigations have focussed on either historic (> 130-years old) or recent (< 130-years old) eruptions of Mt. Etna or on the ancient basal lavas (ca. 500 ka). In this study, we have analysed and modelled the petrogenesis of alkalic lavas from the southern wall of the Valle del Bove, which represent a time span of Mt. Etna’s prehistoric magmatic activity from ~ 85 to ~ 4 ka. They exhibit geochemical variations that distinguish them as six separate lithostratigraphic and volcanic units. Isotopic data (143Nd/144Nd = 0.51283–0.51291; 87Sr/86Sr = 0.70332–0.70363; 176Hf/177Hf = 0.28288–0.28298; 206Pb/204Pb = 19.76–20.03) indicate changes in the magma source during the ~ 80 kyr of activity that do not follow the previously observed temporal trend. The oldest analysed Valle del Bove unit (Salifizio-1) erupted basaltic trachyandesites with variations in 143Nd/144Nd and 87Sr/86Sr ratios indicating a magma source remarkably similar to that of recent Etna eruptions, while four of the five subsequent units have isotopic compositions resembling those of historic Etna magmas. All five magma batches are considered to be derived from melting of a mixture of spinel lherzolite and pyroxenite (± garnet). In contrast, the sixth unit, the main Piano Provenzana formation (~ 42–30 ka), includes the most evolved trachyandesitic lavas (58–62 wt% SiO2) and exhibits notably lower 176Hf/177Hf, 143Nd/144Nd, and 206Pb/204Pb ratios than the other prehistoric Valle del Bove units. This isotopic signature has not yet been observed in any other samples from Mt. Etna and we suggest that the parental melts of the trachyandesites were derived predominantly from ancient pyroxenite in the mantle source of Etna.


Sign in / Sign up

Export Citation Format

Share Document