single screw extruders
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 20)

H-INDEX

15
(FIVE YEARS 2)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 256
Author(s):  
Florian Brüning ◽  
Volker Schöppner

For plastic processing extruders with grooved feed sections, the design of the feed section by means of analytical calculation models can be useful to reduce experimental costs. However, these models include assumptions and simplifications that can significantly decrease the prediction accuracy of the throughput due to complex flow behavior. In this paper, the accuracy of analytical modeling for calculating the throughput in a grooved barrel extruder is verified based on a statistical design of experiments. A special focus is placed on the assumptions made in the analytics of a backpressure-independent throughput, the assumption of a block flow and the differentiation of the solids conveying into different conveying cases. Simulative throughput tests with numerical simulation software using the discrete element method, as well as experimental throughput tests, serve as a benchmark. Overall, the analytical modeling already shows a very good calculation accuracy. Nevertheless, there are some outliers that lead to larger deviations in the throughput. The model predominantly overestimates the throughputs, whereby the origin of these deviations is often in the conveying angle calculation. Therefore, a regression-based correction factor for calculating the conveying angle is developed and implemented.


2021 ◽  
Vol 36 (5) ◽  
pp. 529-544
Author(s):  
W. Roland ◽  
C. Marschik ◽  
M. Kommenda ◽  
A. Haghofer ◽  
S. Dorl ◽  
...  

Abstract The traditional approach to modeling the polymer melt flow in single-screw extruders is based on analytical and numerical analyses. Due to increasing computational power, data-driven modeling has grown significantly in popularity in recent years. In this study, we compared and evaluated databased modeling approaches (i. e., gradient-boosted trees, artificial neural networks, and symbolic regression models based on genetic programming) in terms of their ability to predict – within a hybrid modeling framework – the three-dimensional non-linear throughput-pressure relationship of metering channels in single-screw extruders. By applying the theory of similarity to the governing flow equations, we identified the characteristic dimensionless influencing parameters, which we then varied to create a large dataset covering a wide range of possible applications. For each single design point we conducted numerical simulations and obtained the dimensionless flow rate. The large dataset was divided into three independent sets for training, interpolation, and extrapolation, the first being used to generate and the remaining two to evaluate the models. Further, we added two features derived from expert knowledge to the models and analyzed their influence on predictive power. In addition to prediction accuracy and interpolation and extrapolation capabilities, we evaluated model complexity, interpretability, and time required to learn the models. This study provides a rigorous analysis of various data-based modeling approaches applied to simulation data in extrusion.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1540
Author(s):  
Philipp Thieleke ◽  
Christian Bonten

Regrind processing poses challenges for single-screw extruders due to the irregularly shaped particles. For grooved feed zones, the output is lessened by the reduction of bulk density in comparison to virgin material. Simultaneously, the melt temperature increases, reducing the extruder’s process window. Through experimental investigations on a test stand, a novel feed zone geometry (nominal diameter 35 mm) is developed. It aligns the regrind’s specific throughput with that of virgin material. The regrind processing window is essentially increased. As the solids conveying in the novel feed zone cannot be simulated with existing methods, numerical simulations using the discrete element method are performed. Since plastic deformation occurs in the novel feed zone geometry, a new hysteresis contact model is developed. In addition to spheres, the regrind and virgin particles are modeled as superquadrics to better approximate the irregular shape. The new contact model’s simulation results show excellent agreement with experimental compression tests. The throughput of the extruder simulations is considerably underestimated when using spheres to represent the real particles than when using irregularly shaped superquadrics. Corresponding advantages can be seen especially for virgin material.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 944
Author(s):  
Raffael Rathner ◽  
Davide Tranchida ◽  
Wolfgang Roland ◽  
Franz Ruemer ◽  
Klaus Buchmann ◽  
...  

Single-screw extruders are usually operated with the screw fully filled (flood-fed mode) and not partially filled (starve-fed mode). These modes result in completely different processing characteristics, and although starve-fed mode has been shown to have significant advantages, such as improved mixing and melting performance, it is rarely used, and experimental studies are scarce. Here, we present extensive experimental research into starve-fed extrusion at feeding rates as low as 25%. We compared various operating parameters (e.g., residence time, pressure build-up, and melting performance) at various feeding rates and screw speeds. The results show a first insight into the performance of starve-fed extruders compared to flood-fed extruders. We explored starve-fed extrusion of a polyethylene material which contains a Very High Molecular Weight Polyethylene fraction (VHMWPE). VHMWPE offers several advantages in terms of mechanical properties, but its high viscosity renders common continuous melt processes, such as compression molding, ram extrusion and sintering, ineffective. This work shows that operating single-screw extruders in extreme starve-fed mode significantly increases residence time, melt temperature, and improves melting and that-in combination—this results in significant elongation of VHMWPE particles.


2021 ◽  
Vol 63 (2) ◽  
pp. 143-150
Author(s):  
Torben Buttler ◽  
Jens Hamje ◽  
Rolf Reiter ◽  
Volker Wesling

Abstract During polymer extrusion there are a variety of situations in which the screwthread of the extrusion screw has an unlubricated metal-to-metal contact with the barrel wall. At the same time the screw coating is subjected to the highest loads. The combination of a secondary hardening cold work steel 1.2379 and a chromium nitride coating deposited by ARC-PVD, which is frequently used in polymer processing, is characterized and investigated. The characterization is done by metallographic examination, SEM and CLSM. The tests were performed on a pin-on-disk and a pin-roll test rig. Different roughness levels were tested on the pin-on-disk test, where massive differences in wear behavior were found. A hybrid surface structure is proposed to optimize the tribosystem. On the pin-on-disk test stand, rollers made of the same material pairing were tested. The test speed was varied to highlight differences and similarities between the tribological systems. A wear minimization of 50 % was achieved and the similarities between the tribological systems were highlighted. In addition, the investigations led to the development of a new model thesis which provides a reason for the development of stippling on the screw when processing polycarbonate.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2893
Author(s):  
Christian Kneidinger ◽  
Erik Schroecker ◽  
Gernot Zitzenbacher ◽  
Jürgen Miethlinger

Melting models for flood fed single screw extruders, like the Tadmor model, describe the melting of pure thermoplastic polymers. However, the melting behavior of heterogenous polymer systems is of great interest for recycling issues, for example. In this work, the melting of polymer mixtures and that of pure bulk polymers by the drag induced melt removal principle is examined both theoretically and experimentally. The applied model experiments represent the melting of the solid bed at the barrel in single screw extruders. As polymer pellet mixtures, polypropylene-homopolymer mixed with polypropylene-block-copolymer, high density polyethylene, polyamide 6, and polymethylmethacrylate were studied using different mixing ratios. The melting rate and the shear stress in the melt film were evaluated dependent on the mixing ratio. The results show that when processing unfavorable material combinations, both shear stress and melting rate can be far below that of pure materials, which was also confirmed by screw extrusion and screw pull-out experiments. Furthermore, approaches predicting the achievable melting rate and the achievable shear stress of polymer mixtures based on the corresponding values of the pure materials are presented.


Sign in / Sign up

Export Citation Format

Share Document