three gorges reservoir region
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 44)

H-INDEX

20
(FIVE YEARS 6)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Peiyin Yuan ◽  
Yu Zhao

The geological conditions of the Three Gorges Reservoir Region are complex and changing, and large- and medium-sized landslides are widely distributed. When a high-speed moving landslide enters the water, the water is significantly disturbed, and a landslide-generated wave will be formed, which will spread along the upstream and downstream of the river, causing significant threats and destruction to the hydraulic structures and the navigation of ships. Based on the typical rock landslide parameters and fracture development, we establish a three-dimensional physics experimental model of the bending section of the landslide-generated wave in the Three Gorges Reservoir Region. This paper primarily studies the variation law of the first wave height of landslide-generated waves with the width, height, and water entry velocity of the landslide body and then provides an empirical formula for the first wave height of landslide-generated waves in the curved section of the Three Gorges Reservoir Region. The ship rolling motion equation in the landslide-generated water area is analysed and established systematically. Additionally, the ship manoeuvring motion model in the landslide-generated water area is built. This paper explains the variation characteristics of ship turning tracks at different sailing speeds and sailing positions and proposes a basis to determine the navigation safety of ships in this area, thus providing new theoretical and technical support for the risk assessment of navigation of ships in the reservoir area.


2021 ◽  
Vol 25 (9) ◽  
pp. 4759-4772
Author(s):  
Ying Li ◽  
Chenghao Wang ◽  
Hui Peng ◽  
Shangbin Xiao ◽  
Denghua Yan

Abstract. Precipitation changes in the Three Gorges Reservoir Region (TGRR) play a critical role in the operation and regulation of the Three Gorges Dam (TGD) and the protection of residents and properties. The potential impacts of the TGD on local and regional circulation patterns, especially the precipitation patterns, have received considerable attention since its construction. However, how the moisture transport affects precipitation changes in the TGRR spatially and temporally remains obscure. In this study, we investigate the long-term moisture sources of precipitation and their contributions to precipitation changes over the TGRR using an atmospheric moisture tracking model. Results suggest that although there is seasonal variation, the moisture contributing to the TGRR precipitation primarily originates from the areas southwest of the TGRR dominated by the Indian summer monsoon. In particular, the sources with the highest annual moisture contribution are the southwestern part of the Yangtze River basin and the southeastern tip of the Tibetan Plateau (TP). On average, 41 %, 56 %, and 3 % of the TGRR precipitation originates from ocean, land, and local recycling, respectively. In addition, the decreased precipitation over the TGRR during 1979–2015 is mainly attributed to the significantly decreased moisture contribution from the source regions southwest of the TGRR (especially around the southeastern tip of the TP). Compared to dry years, the higher precipitation in the TGRR during wet years is contributed by the extra moisture from the southwestern source regions that is delivered by the intensified southwesterly monsoon winds.


2021 ◽  
Vol 13 (9) ◽  
pp. 4743
Author(s):  
Xiuming Li ◽  
Ruimei Cheng ◽  
Wenfa Xiao ◽  
Ge Sun ◽  
Tian Ma ◽  
...  

In this study, we aimed to understand the distribution of and changes in the habitats suitable for Anatidae wintering in the Three Gorges Reservoir Region (TGRR), China, and to explore the impact of the impoundment during different impoundment periods. Based on species occurrence data for four dominant species of Anatidae and environmental factors, a maximum entropy (MaxEnt) model was used to analyze the suitability of habitats during five impoundment periods. The results show that the main factors affecting Anatidae distribution were temperature and roads before the Three Gorges Project (TGP) and elevation after the TGP. After the TGP, the area of the suitable habitat declined rapidly and then gradually increased with increasing water level. After impoundment, the primary area of increased habitat suitability was the main stream of the Yangtze River from Changshou District to Yunyang County and its tributary in the Kaizhou area. Among the habitats, the central water regions were more suitable than the marginal shoal areas. Anatidae habitats in the TGRR were distributed mainly within the Yangtze River main stream and the surrounding areas before the TGP, and the surrounding areas largely disappeared after the TGP, particularly in Chongqing City and Jiangjin District. In this context, it is challenging to create new protected areas within the habitat suitable for Anatidae in the main stream of the Yangtze River; we propose adding the Anatidae as conservation targets within the existing conservation agencies and implementing a waterbird monitoring program for scientific waterbird conservation and the sustainable development of the reservoir.


Sign in / Sign up

Export Citation Format

Share Document