small regulatory rnas
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 67)

H-INDEX

34
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Muhammad Zohaib Nawaz ◽  
Fengping Wang

Abstract Small regulatory RNAs (sRNAs) are present in almost all investigated microbes, regarded as modulators and regulators of gene expression and also known to play their regulatory role in the environmentally significant process. It has been estimated that less than 1% of the microbes in nature are culturable in the laboratory, hindering our understanding of their physiology, and living strategies. However, recent big advancing of DNA sequencing and omics-related data analysis makes the understanding of the genetics, metabolic potentials, even ecological roles of uncultivated microbes possible. In this study, we used a metagenome and metatranscriptome based integrated approach to identifying small RNAs in the microbiome of Guaymas Basin sediments. Hundreds of environmental sRNAs comprising of 228 groups were identified based on their homology, 82% of which displayed high similarity with previously known small RNAs in Rfam database, whereas, “18%” are putative novel sRNA motifs. A putative cis-acting sRNA potentially binding to methyl coenzyme M reductase, a key enzyme in methanogenesis or anaerobic oxidation of methane (AOM), was discovered in the genome of ANaerobic MEthane oxidizing archaea group 1 (ANME-1), which were the dominate microbe in the sample. These sRNAs were actively expressed in local Guaymas Basin hydrothermal environment, suggesting important roles of sRNAs in regulating microbial activity in natural environments.


2021 ◽  
Vol 1 (3) ◽  
pp. 403-423
Author(s):  
Elahe Soltani-Fard ◽  
Sina Taghvimi ◽  
Zahra Abedi Kichi ◽  
Christian Weber ◽  
Zahra Shabaninejad ◽  
...  

Non-coding RNAs (ncRNAs) are functional RNA molecules that comprise about 80% of both mammals and prokaryotes genomes. Recent studies have identified a large number of small regulatory RNAs in Escherichia coli and other bacteria. In prokaryotes, RNA regulators are a diverse group of molecules that modulate a wide range of physiological responses through a variety of mechanisms. Similar to eukaryotes, bacterial microRNAs are an important class of ncRNAs that play an important role in the development and secretion of proteins and in the regulation of gene expression. Similarly, riboswitches are cis-regulatory structured RNA elements capable of directly controlling the expression of downstream genes in response to small molecule ligands. As a result, riboswitches detect and respond to the availability of various metabolic changes within cells. The most extensive and most widely studied set of small RNA regulators act through base pairing with RNAs. These types of RNAs are vital for prokaryotic life, activating or suppressing important physiological processes by modifying transcription or translation. The majority of these small RNAs control responses to changes in environmental conditions. Finally, clustered regularly interspaced short palindromic repeat (CRISPR) RNAs, a newly discovered RNA regulator group, contains short regions of homology to bacteriophage and plasmid sequences that bacteria use to splice phage DNA as a defense mechanism. The detailed mechanism is still unknown but devoted to target homologous foreign DNAs. Here, we review the known mechanisms and roles of non-coding regulatory RNAs, with particular attention to riboswitches and their functions, briefly introducing translational applications of CRISPR RNAs in mammals.


2021 ◽  
Vol 22 (22) ◽  
pp. 12260
Author(s):  
Daniel-Timon Spanka ◽  
Gabriele Klug

Small regulatory RNAs play a major role in bacterial gene regulation by binding their target mRNAs, which mostly influences the stability or translation of the target. Expression levels of sRNAs are often regulated by their own promoters, but recent reports have highlighted the presence and importance of sRNAs that are derived from mRNA 3′ untranslated regions (UTRs). In this study, we investigated the maturation of 5′ and 3′ UTR-derived sRNAs on a global scale in the facultative phototrophic alphaproteobacterium Rhodobacter sphaeroides. Including some already known UTR-derived sRNAs like UpsM or CcsR1-4, 14 sRNAs are predicted to be located in 5′ UTRs and 16 in 3′ UTRs. The involvement of different ribonucleases during maturation was predicted by a differential RNA 5′/3′ end analysis based on RNA next generation sequencing (NGS) data from the respective deletion strains. The results were validated in vivo and underline the importance of polynucleotide phosphorylase (PNPase) and ribonuclease E (RNase E) during processing and maturation. The abundances of some UTR-derived sRNAs changed when cultures were exposed to external stress conditions, such as oxidative stress and also during different growth phases. Promoter fusions revealed that this effect cannot be solely attributed to an altered transcription rate. Moreover, the RNase E dependent cleavage of several UTR-derived sRNAs varied significantly during the early stationary phase and under iron depletion conditions. We conclude that an alteration of ribonucleolytic processing influences the levels of UTR-derived sRNAs, and may thus indirectly affect their mRNA targets.


Author(s):  
Joanna Houghton ◽  
Angela Rodgers ◽  
Graham Rose ◽  
Alexandre D’Halluin ◽  
Terry Kipkorir ◽  
...  

Control of gene expression via small regulatory RNAs (sRNAs) is poorly understood in one of the most successful pathogens, Mycobacterium tuberculosis . Here, we present an in-depth characterization of the sRNA F6, including its expression in different infection models and the differential gene expression observed upon deletion of the sRNA.


2021 ◽  
Author(s):  
Canran Feng ◽  
Kyosuke Torimaru ◽  
Mandy Yu Theng Lim ◽  
Li-Ling Chak ◽  
Kosuke Tsuji ◽  
...  

Small regulatory RNAs (sRNAs) are involved in anti-viral defense and gene regulation. Although RNA-dependent RNA Polymerases (RdRPs) are known to produce sRNA in nematodes, plants and fungi, whether they play roles in sRNA biogenesis in other animals remains controversial. In this study, we study sRNAs in the ISE6 cell line, which is derived from the black-legged tick, an important vector of human and animal pathogens. We identify abundant classes of ~22nt sRNAs that require specific combinations of RdRPs and sRNA effector proteins (Argonautes or AGOs). RdRP-dependent sRNAs are mainly derived from sense and antisense strands of RNA polymerase III-transcribed genes and repetitive elements. Unlike C. elegans sRNA pathways, 5′-tri-phosphorylated sRNAs are not detected, suggesting that the tick pathways are distinct from the pathways known in worms. Knockdown of one of the RdRPs unexpectedly results in downregulation of a subset of viral transcripts, in contrast to their upregulation by AGO knockdown. Furthermore, we show that knockdown of AGO/RdRP causes misregulation of protein-coding genes including RNAi-related genes, suggesting feedback regulation. Luciferase assays demonstrate that one of the RdRP-regulated genes, the MEK1 ortholog IscDsor1 is regulated through its 3′UTR, where a putative sRNA target site resides. These results provide evidence that arachnid RdRPs are important sRNA biogenesis factors, and the discovery of novel pathways underscores the importance of characterizing sRNA biogenesis in various organisms to understand virus-vector interactions and to exploit RNAi for pest control.


2021 ◽  
Author(s):  
Anastasia Gant Kanegusuku ◽  
Isidora N. Stankovic ◽  
Pamela A. Cote-Hammarlof ◽  
Priscilla H. Yong ◽  
Christine A. White-Ziegler

One of the first environmental cues sensed by a microbe as it enters a human host is an upshift in temperature to 37°C. In this dynamic timepoint analysis, we demonstrate that this environmental transition rapidly signals a multitude of gene expression changes in Escherichia coli . Bacteria grown at 23°C under aerobic conditions were shifted to 37°C and mRNA expression was measured at timepoints after the shift to 37°C (t=0.5, 1, and 4 hours). The first hour is characterized by a transient shift to anaerobic respiration strategies and stress responses, particularly acid resistance, indicating that temperature serves as a sentinel cue to predict and prepare for various niches within the host. The temperature effects on a subset of stress response genes were shown to be mediated by RpoS, directly correlated with RpoS, DsrA and RprA levels, and increased acid resistance was observed that was dependent on 23°C growth and RpoS. By 4 hours, gene expression shifted to aerobic respiration pathways, decreased stress responses, coupled with increases in genes associated with biosynthesis (amino acid, nucleotides), iron uptake, and host defense. ompT , a gene that confers resistance to antimicrobial peptides, was highly thermoregulated and with a pattern conserved in enteropathogenic and uropathogenic E. coli . An immediate decrease in curli gene expression concomitant with an increase in flagellar gene expression implicates temperature in this developmental decision. Together, our studies demonstrate that temperature signals a reprogramming of gene expression immediately upon an upshift that may predict, prepare, and benefit survival of the bacterium within the host. IMPORTANCE: As one of the first cues sensed by the microbe upon entry into a human host, understanding how bacteria like E. coli modulate gene expression in response to temperature improves our understanding of how bacteria immediately initiate responses beneficial to survival and colonization. For pathogens, understanding the various pathways of thermal regulation could yield valuable targets for anti-infective chemotherapeutic drugs or disinfection measures. In addition, our data provide a dynamic examination of the RpoS stress response, providing genome-wide support for how temperature impacts RpoS through changes in RpoS stability and modulation by small regulatory RNAs.


2021 ◽  
Vol 9 (9) ◽  
pp. 1865
Author(s):  
Sabine Brantl ◽  
Peter Müller

Small regulatory RNAs (sRNAs) that act by base-pairing are the most abundant posttranscriptional regulators in all three kingdoms of life. Over the past 20 years, a variety of approaches have been employed to discover chromosome-encoded sRNAs in a multitude of bacterial species. However, although largely improved bioinformatics tools are available to predict potential targets of base-pairing sRNAs, it is still challenging to confirm these targets experimentally and to elucidate the mechanisms as well as the physiological role of their sRNA-mediated regulation. Here, we provide an overview of currently known cis- and trans-encoded sRNAs from B. subtilis with known targets and defined regulatory mechanisms and on the potential role of RNA chaperones that are or might be required to facilitate sRNA regulation in this important Gram-positive model organism.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1263
Author(s):  
Lamis Saad ◽  
Jean Zwiller ◽  
Andries Kalsbeek ◽  
Patrick Anglard

Based on studies describing an increased prevalence of addictive behaviours in several rare sleep disorders and shift workers, a relationship between circadian rhythms and addiction has been hinted for more than a decade. Although circadian rhythm alterations and molecular mechanisms associated with neuropsychiatric conditions are an area of active investigation, success is limited so far, and further investigations are required. Thus, even though compelling evidence connects the circadian clock to addictive behaviour and vice-versa, yet the functional mechanism behind this interaction remains largely unknown. At the molecular level, multiple mechanisms have been proposed to link the circadian timing system to addiction. The molecular mechanism of the circadian clock consists of a transcriptional/translational feedback system, with several regulatory loops, that are also intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape shows profound changes in the addictive brain, with significant alterations in histone modification, DNA methylation, and small regulatory RNAs. The combination of these two observations raises the possibility that epigenetic regulation is a common plot linking the circadian clocks with addiction, though very little evidence has been reported to date. This review provides an elaborate overview of the circadian system and its involvement in addiction, and we hypothesise a possible connection at the epigenetic level that could further link them. Therefore, we think this review may further improve our understanding of the etiology or/and pathology of psychiatric disorders related to drug addiction.


Sign in / Sign up

Export Citation Format

Share Document