synthetic lethal interactions
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 67)

H-INDEX

28
(FIVE YEARS 7)

2022 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Grace S. Shieh

Two genes are said to have synthetic lethal (SL) interactions if the simultaneous mutations in a cell lead to lethality, but each individual mutation does not. Targeting SL partners of mutated cancer genes can kill cancer cells but leave normal cells intact. The applicability of translating this concept into clinics has been demonstrated by three drugs that have been approved by the FDA to target PARP for tumors bearing mutations in BRCA1/2. This article reviews applications of the SL concept to translational cancer medicine over the past five years. Topics are (1) exploiting the SL concept for drug combinations to circumvent tumor resistance, (2) using synthetic lethality to identify prognostic and predictive biomarkers, (3) applying SL interactions to stratify patients for targeted and immunotherapy, and (4) discussions on challenges and future directions.


2021 ◽  
Author(s):  
Satu Pallasaho ◽  
Aishwarya Gondane ◽  
Damien Duveau ◽  
Craig Thomas ◽  
Massimo Loda ◽  
...  

Prostate cancer (PC) is the most common cancer in men and after development of the castration-resistant PC (CRPC), there are no curative treatment options. Inactivating mutations in cyclin-dependent kinase 12 (CDK12) define an aggressive sub-type of CRPC. We hypothesized that compromised CDK12 activity leads to a significant rewiring of the CRPC cells, and that this rewiring results in actionable synthetic lethal interactions. Methods: We used combinatorial lethal screening, ChIP-seq data, RNA-seq data, global alternative splicing analysis, and comprehensive mass spectrometry (MS) profiling to understand how the compromised CDK12 activity rewires the CRPC cells. In addition, we used DepMap-, PC- and CRPC-datasets as a strategy to identify factors that are selectively required by the CDK12-mutant cells. Results: We show that inhibition of O-GlcNAc transferase (OGT) and CDK12 induces cancer cell-selective growth-defect. OGT catalyzes all nucleocytoplasmic O-GlcNAcylation, and we use unbiased MS-profiling to show that the short-term CDK12 inhibition induces hyper-O-GlcNAcylation of the spliceosome-machinery in PC and CRPC cells. Integration of DepMap- and a small scale-drug screen data reveled that depletion of CDK12 activity causes addiction to non-essential spliceosome components (CLK1/4 and SRPK1). CDK12-mutant tumors overexpress CLK1/4 and SRPK1. Finally, we show that the genomes of the CDK12-mutant tumors have lowered DNA methylation, and that CDK12 inhibition induces the expression of the genes marked by DNA methylation. Conclusions: Compromised CDK12 activity rewires DNA methylation, transcription and splicing, and this rewiring renders the affected cells addicted on the non-essential spliceosome components. We propose that inactivation of CDK12 is a biomarker for sensitivity against inhibitors of the non-essential spliceosome components just entering the clinical trials.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jiahao Hu ◽  
Jiasheng Cao ◽  
Win Topatana ◽  
Sarun Juengpanich ◽  
Shijie Li ◽  
...  

AbstractTP53 is a critical tumor-suppressor gene that is mutated in more than half of all human cancers. Mutations in TP53 not only impair its antitumor activity, but also confer mutant p53 protein oncogenic properties. The p53-targeted therapy approach began with the identification of compounds capable of restoring/reactivating wild-type p53 functions or eliminating mutant p53. Treatments that directly target mutant p53 are extremely structure and drug-species-dependent. Due to the mutation of wild-type p53, multiple survival pathways that are normally maintained by wild-type p53 are disrupted, necessitating the activation of compensatory genes or pathways to promote cancer cell survival. Additionally, because the oncogenic functions of mutant p53 contribute to cancer proliferation and metastasis, targeting the signaling pathways altered by p53 mutation appears to be an attractive strategy. Synthetic lethality implies that while disruption of either gene alone is permissible among two genes with synthetic lethal interactions, complete disruption of both genes results in cell death. Thus, rather than directly targeting p53, exploiting mutant p53 synthetic lethal genes may provide additional therapeutic benefits. Additionally, research progress on the functions of noncoding RNAs has made it clear that disrupting noncoding RNA networks has a favorable antitumor effect, supporting the hypothesis that targeting noncoding RNAs may have potential synthetic lethal effects in cancers with p53 mutations. The purpose of this review is to discuss treatments for cancers with mutant p53 that focus on directly targeting mutant p53, restoring wild-type functions, and exploiting synthetic lethal interactions with mutant p53. Additionally, the possibility of noncoding RNAs acting as synthetic lethal targets for mutant p53 will be discussed.


Author(s):  
Lin Zhou ◽  
Siqi Zheng ◽  
Fernando R Rosas Bringas ◽  
Bjorn Bakker ◽  
Judith E Simon ◽  
...  

Abstract Maternal embryonic leucine zipper kinase (MELK) is frequently overexpressed in cancer, but the role of MELK in cancer is still poorly understood. MELK was shown to have roles in many cancer-associated processes including tumor growth, chemotherapy resistance, and tumor recurrence. To determine whether the frequent overexpression of MELK can be exploited in therapy, we performed a high-throughput screen using a library of Saccharomyces cerevisiae mutants to identify genes whose functions become essential when MELK is overexpressed. We identified two such genes: LAG2 and HDA3. LAG2 encodes an inhibitor of the Skp, Cullin, F-box containing (SCF) ubiquitin-ligase complex, while HDA3 encodes a subunit of the HDA1 histone deacetylase complex. We find that one of these synthetic lethal interactions is conserved in mammalian cells, as inhibition of a human homolog of HDA3 (Histone Deacetylase 4, HDAC4) is synthetically toxic in MELK overexpression cells. Altogether, our work identified a novel potential drug target for tumors that overexpress MELK.


2021 ◽  
Author(s):  
Bahar Tercan ◽  
Guangrong Qin ◽  
Taekkyun Kim ◽  
Boris Aguilar ◽  
Christopher J. Kemp ◽  
...  

Synthetic lethal interactions (SLIs), genetic interactions whereby the simultaneous inactivation of two genes leads to a lethal phenotype, are promising targets for therapeutic intervention in cancer. We present SL-Cloud, an integrated resource and framework to facilitate prediction of context-specific synthetic lethal interactions using cloud-based technologies. This resource addresses two main challenges related to SLI inference, namely, the need to wrangle and preprocess large multi-omic datasets and the ability to integrate multiple prediction approaches, each of which comes with its own assumptions. We demonstrate the utility of this resource by using a set of DNA damage repair genes as the basis for predicting potential synthetic lethal interaction partners using multiple computational strategies. Context specific SLI potential can also be studied using the framework. The SL-Cloud computational resource demonstrates a variety of use cases and demonstrates the utility of this approach for customizable and extensible in silico inference of SLIs.


2021 ◽  
Author(s):  
Matthew McNeil ◽  
Heath Ryburn ◽  
Justin Tirados ◽  
Chen-Yi Cheung ◽  
Gregory Cook

Mycobacterium tuberculosis remains a leading cause of infectious disease morbidity and mortality for which new drug combination therapies are needed. Combinations of respiratory inhibitors can have synergistic or synthetic lethal interactions suggesting that regimens with multiple bioenergetic inhibitors will drastically shorten treatment times. However, realizing this potential is hampered by a lack of on-target inhibitors and a poor understanding of which inhibitor combinations have the strongest interactions. To overcome these limitations, we have used CRISPR interference (CRISPRi) to characterize the consequences of transcriptionally inhibiting individual respiratory complexes and identify bioenergetic complexes that when simultaneously inhibited result in cell death. In this study, we identified known and novel synthetic lethal interactions and demonstrate how the engineering of CRISPRi-guide sequences can be used to further explore networks of interacting gene pairs. These results provide fundamental insights into the functions of and interactions between bioenergetic complexes and the utility of CRISPRi in designing drug combinations.


2021 ◽  
Author(s):  
Iñigo Apaolaza ◽  
Edurne San José-Enériz ◽  
Luis Valcarcel ◽  
Xabier Agirre ◽  
Felipe Prosper ◽  
...  

Synthetic Lethality (SL) is a promising concept in cancer research. A number of computational methods have been developed to predict SL in cancer metabolism, among which our network-based computational approach, based on genetic Minimal Cut Sets (gMCSs), can be found. A major challenge of these approaches to SL is to systematically consider tumor environment, which is particularly relevant in cancer metabolism. Here, we propose a novel definition of SL for cancer metabolism that integrates genetic interactions and nutrient availability in the environment. We extend our gMCSs approach to determine this new family of metabolic synthetic lethal interactions. A computational and experimental proof-of-concept is presented for predicting the lethality of dihydrofolate reductase inhibition in different environments. Finally, our novel approach is applied to identify extracellular nutrient dependences of tumor cells, elucidating cholesterol and myo-inositol depletion as potential vulnerabilities in different malignancies.


Author(s):  
Julia Varga ◽  
Marie Kube ◽  
Katja Luck ◽  
Sandra Schick

BAF complexes are multi-subunit chromatin remodelers, which have a fundamental role in genomic regulation. Large-scale sequencing efforts have revealed frequent BAF complex mutations in many human diseases, particularly in cancer and neurological disorders. These findings not only underscore the importance of the BAF chromatin remodelers in cellular physiological processes, but urge a more detailed understanding of their structure and molecular action to enable the development of targeted therapeutic approaches for diseases with BAF complex alterations. Here, we review recent progress in understanding the composition, assembly, structure, and function of BAF complexes, and the consequences of their disease-associated mutations. Furthermore, we highlight intra-complex subunit dependencies and synthetic lethal interactions, which have emerged as promising treatment modalities for BAF-related diseases.


Author(s):  
Kun Yao ◽  
Hua Liu ◽  
Jiajun Yin ◽  
Jianmin Yuan ◽  
Hong Tao

AbstractMutant isocitrate dehydrogenase 1/2 (mIDH1/2) gain a novel function for the conversion of α-ketoglutarate (α-KG) to oncometabolite R-2-hydroxyglutarate (R-2-HG). Two molecular entities namely enasidenib (AG-221) and ivosidenib (AG-120) targeting mIDH2 and mIDH1 respectively, have already been approved by FDA for the treatment of relapsed/refractory acute myeloid leukemia (R/R AML). However, the low responses, drug-related adverse effects, and most significantly, the clinically-acquired resistance of AG-221 and AG-120 has shown great influence on their clinical application. Therefore, searching for novel therapeutic strategies to enhance tumor sensitivity, reduce drug-related side effects, and overcome drug resistance have opened a new research field for defeating IDH-mutated cancers. As the effective methods, synthetic lethal interactions and synergetic therapies are extensively investigated in recent years for the cure of different cancers. In this review, the molecules displaying synergetic effects with mIDH1/2 inhibitors, as well as the targets showing relevant synthetic lethal interactions with mIDH1/2 are described emphatically. On these foundations, we discuss the opportunities and challenges for translating these strategies into clinic to combat the defects of existing IDH inhibitors.


2021 ◽  
Author(s):  
Floris Foijer ◽  
Lin Zhou ◽  
Fernando R Rosas Bringas ◽  
Bjorn Bakker ◽  
Judith E Simon ◽  
...  

Maternal embryonic leucine zipper kinase (MELK) is frequently overexpressed in cancer, but the role of MELK in cancer is still poorly understood. MELK was shown to have roles in many cancer-associated processes including tumor growth, chemotherapy resistance, and tumor recurrence. To determine whether the frequent overexpression of MELK can be exploited in therapy, we performed a high-throughput screen using a library of Saccharomyces cerevisiae mutants to identify genes whose functions become essential when MELK is overexpressed. We identified two such genes: LAG2 and HDA3. LAG2 encodes an inhibitor of the SCF ubiquitin-ligase complex, while HDA3 encodes a subunit of the HDA1 histone deacetylase complex. We find that one of these synthetic lethal interactions is conserved in mammalian cells, as inhibition of a human homolog of HDA3 (HDAC4) is synthetically toxic in MELK overexpression cells. Altogether, our work might provide a new angle of how to exploit MELK overexpression in cancers and might thus lead to novel intervention strategies.


Sign in / Sign up

Export Citation Format

Share Document