co2 biofixation
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 13 (23) ◽  
pp. 13480
Author(s):  
Chiu-Mei Kuo ◽  
Yu-Ling Sun ◽  
Cheng-Han Lin ◽  
Chao-Hsu Lin ◽  
Hsi-Tien Wu ◽  
...  

Microalgae-based carbon dioxide (CO2) biofixation and biorefinery are the most efficient methods of biological CO2 reduction and reutilization. The diversification and high-value byproducts of microalgal biomass, known as microalgae-based biorefinery, are considered the most promising platforms for the sustainable development of energy and the environment, in addition to the improvement and integration of microalgal cultivation, scale-up, harvest, and extraction technologies. In this review, the factors influencing CO2 biofixation by microalgae, including microalgal strains, flue gas, wastewater, light, pH, temperature, and microalgae cultivation systems are summarized. Moreover, the biorefinery of Chlorella biomass for producing biofuels and its byproducts, such as fine chemicals, feed additives, and high-value products, are also discussed. The technical and economic assessments (TEAs) and life cycle assessments (LCAs) are introduced to evaluate the sustainability of microalgae CO2 fixation technology. This review provides detailed insights on the adjusted factors of microalgal cultivation to establish sustainable biological CO2 fixation technology, and the diversified applications of microalgal biomass in biorefinery. The economic and environmental sustainability, and the limitations and needs of microalgal CO2 fixation, are discussed. Finally, future research directions are provided for CO2 reduction by microalgae.


Author(s):  
Michele Greque de Morais ◽  
Bruna Pereira Vargas ◽  
Bruna da Silva Vaz ◽  
Bruna Barcelos Cardias ◽  
Jorge Alberto Vieira Costa

2021 ◽  
Vol 1053 (1) ◽  
pp. 012132
Author(s):  
Widayat ◽  
M Suzery ◽  
H Satriadi ◽  
Wahyudi ◽  
J Philia
Keyword(s):  

2021 ◽  
Vol 46 (1) ◽  
pp. 21-34
Author(s):  
Javier Christian Ramirez-Perez ◽  
Harry Janes

In this research, the physiological response of the microalgae Spirulina platensis to salinity stress (1 and 100 g L-1 ) was investigated. Spirulina platensis and Spirulina platensis (adapted to high salt concentration) were operated at laboratory scale in a semi-continuous photobioreactors. The responses examined were within 0.5 to 10% CO2 concentration, temperatures from 10 to 40 oC, light intensities from 60 to 200 μmol m-2 s -1 and presented better results in terms of all kinetic parameters. The highest rate of CO2 biofixation for Spirulina platensis was 25.1 gCO2 m-3 h -1 , and the maximum specific growth (μmax) achieved was 0.44 d-1 - 0.67 d-1 at 2.5% CO2, 150 µmol m-2 s -1 at 25 oC. Corresponding determined values of Spirulina platensis adapted were 18.2 gCO2 m-3 h -1 , 0.31 d-1 - 0.58 d-1 at 2.5% CO2, 60 µmol s-1 m-2 and 28 oC. However, both microalgae exhibited experimental limiting growth factors, CO2 10%, 40 oC and 200 µmol m-2 s -1 , conditions under which photosynthetic CO2 biofixation may be inhibited and photoinhibition of photosynthesis may be enhanced by salinity. The efficiency of 2.5% CO2 removal by Spirulina platensis achieved 99%, whereas Spirulina platensis adapted to 96%, respectively. The kinetic parameters estimated for Spirulina platensis can be used to improve photobioreactor design for reducing of atmospheric carbon dioxide.


2020 ◽  
Vol 42 ◽  
pp. 101291 ◽  
Author(s):  
Hayat Abdulla Yusuf ◽  
S. M. Zakir Hossain ◽  
Ahmed Ali Khamis ◽  
Hassan Tariq Radhi ◽  
Ahmed Salman Jaafar

Sign in / Sign up

Export Citation Format

Share Document