benton county
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 0)

Plant Disease ◽  
2022 ◽  
Author(s):  
Jerry E. Weiland

Hebes (Veronica spp. in the section Hebe) are ornamental perennials and shrubs grown for their flowers and symmetric, evergreen leaves. They are uncommon in U.S. horticulture and are only produced by a few nurseries regionally (Oregon and Washington). In June, July, and August (2016 to 2021), stems on 1 to 5-year-old Veronica cupressoides, V. ochracea, and V. pinguifolia in five landscape plantings around Benton County, OR (17 plants total, locations 2 to 37 km apart) began to wilt, turn brown, and die. At least nine of the plants originated from a single nursery. Initially, just one or two stems/plant were affected, but eventually the entire plant died. Stem tissues were discolored brown to black internally and the roots were dry and necrotic. Leaves turned brown and brittle, but remained attached. Stems from each plant were disinfested in 0.5% NaOCl (1 min), rinsed in 70% ethanol, and dried (2 min). Pieces (5 mm2) were then plated onto 1/2 strength potato dextrose agar amended with streptomycin (50 mg/liter) and incubated in the dark at 20°C. Three to five days later, greyish-white cultures producing black microsclerotia (75 × 110 µm, n = 50) grew out of all samples. No spores were produced. All isolates were identified as Macrophomina phaseolina by morphology and by ≥99% homology (566-570/571 nt) to the internal transcribed spacer sequence (primers ITS1 and ITS4) from the type specimen (GenBank KF766195) (Hyde et al. 2014). Three representative sequences were deposited in GenBank (MZ726450 to MZ726452). Inoculum was prepared from these isolates by growing cultures in 250 ml of potato dextrose broth on a shaker (125 rpm at 25°C). After 2 weeks, the broth was decanted and the fungal biomass was air dried for 3 days at 25°C before grinding into a powder with a mortar and pestle. Three plants each of 6-month-old V. ochracea 'James Stirling', V. cupressoides 'McKean', and V. pinguifolia 'Sutherlandii' were inoculated with each isolate by rinsing the soil off of the roots with tap water, trimming off 0.5 cm of the roots, and then soaking the rootball in a slurry of 1 g dried inoculum in 500 ml of 0.2% water agar (WA) for 10 minutes (Reyes Gaige et al. 2010). Three plants of each species that were soaked in plain 0.2% WA served as negative controls. Afterwards, plants were potted into soilless media (Metro-Mix 840, Sun Gro Horticulture, Agawam, MA) in 3.5 inch square pots and arranged in a completely randomized design in a greenhouse set at 28/24°C day/night. The experiment was conducted three times. One to three months later, inoculated plants began to turn yellow, wilt, and die whereas all control plants remained healthy. The same pathogen was reisolated from 90% of the inoculated plants, but never from negative controls. M. phaseolina was reported on strawberry in southern Oregon in 2014 (Pscheidt and Ocamb 2021), but has not been reported from locations further north in the state where soil temperatures are cooler. It is unusual that M. phaseolina was isolated from an uncommon host at five different locations in an area of the state where the pathogen was not known to occur. Based on this, and on the number of infected plants originating from a single source, it seems likely that M. phaseolina was accidentally spread on contaminated plants produced by the nursery industry, where the warmer temperatures in production greenhouses would provide a more conducive environment for the pathogen's growth and spread. Growers should keep watch for symptoms of this pathogen in their nurseries.


2021 ◽  
Vol 37 (4) ◽  
pp. 296-297
Author(s):  
Lauren Roberts ◽  
Bethany Brauer ◽  
William L. Nicholson ◽  
Bryan N. Ayres ◽  
Kip R. Thompson ◽  
...  

ABSTRACT The Asian longhorned tick, Haemaphysalis longicornis, is an invasive species, originally from eastern Asia, and was first reported in the USA in New Jersey. It is now reported in several eastern states. In 2018, researchers reported H. longicornis in northwest Arkansas (Benton County). This tick species is a proven vector of livestock and human diseases, which prompted the current survey of ticks in southwest Missouri. A tick drag in Greene County, Missouri, produced 2 H. longicornis nymphs on June 9, 2021. This is the first report of this species for both the state and county.


Plant Disease ◽  
2020 ◽  
Author(s):  
Elisabeth Darling ◽  
Jian Pu ◽  
Emilie Cole ◽  
Ryan Christian ◽  
Frederick William Warner ◽  
...  

Cyst nematodes are ranked as the second most damaging plant-parasitic nematode genus of crops worldwide (Jones et al. 2013). The hop cyst nematode, Heterodera humuli, has been reported to cause up to 38% reduction in dry hops per bine (Hay and Pethybridge 2003). America is the top hop producing country worldwide, with 75% of production occurring in Washington state, with the majority of this production occurring in the Yakima Valley region (USDA, 2019). In late 2019, 30 soil samples from 15 different fields were collected from the hop cvs. HBC 394, HBC 369, and YCR 14. Nematodes were extracted using an adapted centrifugal floatation method (Jenkins 1964) from 100 cc subsamples of soil. Twenty of these samples contained at least one cyst and 23 contained at least one juvenile. Body length of juveniles (n = 5) averaged + standard deviation 377.62 ± 4.76 μm which is consistent with H. humuli juvenile body measurements (Sen 1968). Three samples from Yakima County and two from Benton County were identified to the species level using sequences from the internal transcribed spacer (ITS) region of the 5.8S gene. The sequences (GenBank accession numbers MT840678 to MT840682) were amplified using forward primer 5.8S-F (5’-GTGATTCCATTCACCAHCTACCTG-3’), and reverse primer 5.8S-R (5’-TTCGCACTAATTATCGCAGTTGG-3’). Sequence comparison with available ITS (5.8S) sequences in GenBank using BLAST showed 99.85% identity to H. humuli for all five samples. Because COI sequences of H. humuli are not available, to provide an additional marker for species identification, we amplified the COI sequences by using (forward primer Hete-COI-F (5’-TTTGGDCAYCCHGARGTTTATGTT-3’), and reverse primer Hete-COI-R (5’-AYWGTAAAAAGGRRAATAAAACC-3’) for these samples. Four COI sequences (GenBank accession numbers MT840683 to MT840686) were obtained. These COI sequences will be used to identify future H. humuli samples. To confirm pathogenicity, eight 1-gal pots were filled with a 90:10 play sand to potting soil mixture and one hop rhizome cv. ‘Centennial’ was planted in pots and maintained in a greenhouse. After above ground plant growth was observed, half the pots were inoculated with hand-picked H. humuli cysts from Yakima soil samples at a density of 10 cysts/100 cc of soil. The life cycle of H. humuli in potted experiments is 40 days (McNamara and Mende 1995). Forty-five days after inoculation, plant measurements were recorded and nematodes extracted from five 100 cc soil samples per pot as described above. Soil samples revealed that H. humuli populations had an average Reproductive Factor (RF = final nematode population/initial nematode population) of 2.08. Five cysts were crushed to determine eggs/cyst, which yielded an average of 101 eggs/cyst. Young infected hops lacked vigor, with all replicates stunted both in bine height and leaf length compared to healthy controls. Bine heights were reduced by an average of 40.4% in pots inoculated with H. humuli compared to control plants (P = 0.0016). Distribution of hop cyst within the United States is limited to the top four states for hop production: Washington, Oregon, Idaho and Michigan (Cobb 1962; Sen and Jensen 1967; Hafez et al. 2010, Warner and Bird, 2015). In 1962, Cobb reported H. humuli in Pierce County, Washington, but it had not been reported in Benton County and Yakima County until now. This is a significant finding that has the potential to impact the Washington state hop industry, valued at $475.7 million in 2019 (USDA, 2019). Due to the lack of known effective nematode control measures, the discovery of H. humuli in the major hop-growing region of Washington warrants concern.


2020 ◽  
Author(s):  
George V. Last ◽  
◽  
Tammy M. Rittenour ◽  
Tammy M. Rittenour ◽  
Tammy M. Rittenour
Keyword(s):  

OLA Quarterly ◽  
2018 ◽  
Vol 23 (4) ◽  
pp. 35-39
Author(s):  
Bonnie Brzozowski ◽  
Elizabeth Johnson ◽  
Kristy Kemper Hodge

Sign in / Sign up

Export Citation Format

Share Document