glucose stimulated insulin secretion
Recently Published Documents


TOTAL DOCUMENTS

919
(FIVE YEARS 236)

H-INDEX

71
(FIVE YEARS 6)

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Yongtao Li ◽  
Wenshan Bian ◽  
Yang Jiang ◽  
Danyang Liu ◽  
Lei Shen

As a common clinical chronic disease, the incidence of diabetes is increasing year by year. According to the latest statistics from the International Diabetes Federation, as of 2019, the global prevalence of diabetes has reached 8.3%. This study aims to investigate the effect of CXCL-13 on the migration ability of human mesenchymal stem cells (hMSCs) and to clarify the specific molecular mechanism of the protective effect of hMSCs on islet B cells. The hMSCs were cultured in high-glucose environment, and the effect of CXCL-13 on the migration ability of hMSCs was determined by Transwell experiment. After coculture of hMSCs and islet B cells, the activity of cells was detected by CCK8 assay, the expression of Ki-67 in cells was detected by RT-PCR, and the expression of P53 was detected by Western blot to investigate the effect of hMSCs on the proliferation and apoptosis of islet B cells. The effect of hMSCs on the function of islet B cells was determined by glucose stimulated insulin secretion experiment. Transwell experiment results showed that CXCL-13 could promote the migration of hMSCs to islet B cells in high-glucose environment. The results of CCK-8 showed that the cell activity in the coculture group was significantly higher than that of the other groups, and RT-PCR showed that the expression of Ki-67 was significantly increased in the coculture group of hMSCs and islet B cells. The results of Western blot showed that the expression of P53 was significantly decreased in the coculture group, and the glucose stimulated insulin secretion test showed that insulin secretion was significantly increased. It was found that after the inhibition of ATK, cell activity was significantly reduced, and apoptosis was significantly increased. Meanwhile, the expression of Ki-67 was inhibited, the expression of P-53 was significantly increased, and insulin secretion was significantly reduced. To sum up, in a high-glucose environment, CXCL-13 effectively promoted the migration of hMSCs, and hMSCs protected the activity and function of islet B cells through Akt signaling pathway.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yuhua Gao ◽  
Weijun Guan ◽  
Chunyu Bai

In this study, we isolated and cultured pancreatic ductal cells from canines and revealed the possibility for using them to differentiate into functional pancreatic beta cells in vitro. Passaged pancreatic ductal cells were induced to differentiate into beta-like pancreatic islet cells using a mixture of induced factors. Differentiated pancreatic ductal cells were analyzed based on intracellular insulin granules using transmission electron microscopy, the expression of insulin and glucagon using immunofluorescence, and glucose-stimulated insulin secretion using ELISA. Our data revealed that differentiated pancreatic ductal cells not only expressed insulin and glucagon but also synthesized insulin granules and secreted insulin at different glucose concentrations. Our study might assist in the development of effective cell therapies for the treatment of type 1 diabetes mellitus in dogs.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jee-Hye Kim ◽  
Viviane Delghingaro-Augusto ◽  
Jeng Yie Chan ◽  
D. Ross Laybutt ◽  
Joseph Proietto ◽  
...  

BackgroundMaintenance of a normal fetal nutrient supply requires major adaptations in maternal metabolic physiology, including of the islet beta-cell. The role of lipid signaling processes in the mechanisms of islet beta-cell adaptation to pregnancy has been minimally investigated.ObjectiveTo determine the effects of pregnancy on islet fatty acid (FA) metabolic partitioning and FA augmentation of glucose-stimulated insulin secretion (GSIS).MethodsAge matched virgin, early pregnant (gestational day-11, G11) and late pregnant (G19) Sprague-Dawley rats were studied. Fasted and fed state biochemistry, oral glucose tolerance tests (OGTT), and fasted and post-OGTT liver glycogen, were determined to assess in vivo metabolic characteristics. In isolated islets, FA (BSA-bound palmitate 0.25 mmol/l) augmentation of GSIS, FA partitioning into esterification and oxidation processes using metabolic tracer techniques, lipolysis by glycerol release, triacylglycerols (TG) content, and the expression of key beta-cell genes were determined.ResultsPlasma glucose in pregnancy was lower, including during the OGTT (glucose area under the curve 0-120 min (AUC0-120); 655±24 versus 849±13 mmol.l-1.min; G19 vs virgin; P<0.0001), with plasma insulin concentrations equivalent to those of virgin rats (insulin AUC0-120; 97±7 versus 83±7 ng.ml-1.min; G19 vs virgin; not significant). Liver glycogen was depleted in fasted G19 rats with full recovery after oral glucose. Serum TG increased during pregnancy (4.4±0.4, 6.7±0.5; 17.1±1.5 mmol/l; virgin, G11, G19, P<0.0001), and islet TG content decreased (147±42, 172±27, 73±13 ng/µg protein; virgin, G11, G19; P<0.01). GSIS in isolated islets was increased in G19 compared to virgin rats, and this effect was augmented in the presence of FA. FA esterification into phospholipids, monoacylglycerols and TG were increased, whereas FA oxidation was reduced, in islets of pregnant compared to virgin rats, with variable effects on lipolysis dependent on gestational age. Expression of Ppargc1a, a key regulator of mitochondrial metabolism, was reduced by 51% in G11 and 64% in G19 pregnant rat islets compared to virgin rat islets (P<0.001).ConclusionA lowered set-point for islet and hepatic glucose homeostasis in the pregnant rat has been confirmed. Islet adaptation to pregnancy includes increased FA esterification, reduced FA oxidation, and enhanced FA augmentation of glucose-stimulated insulin secretion.


2021 ◽  
Vol 16 ◽  
Author(s):  
Maryam Mazraesefidi ◽  
Maryam Mohammad Sadeghipour ◽  
Hossein Khorramdelazad ◽  
Mahdi Mahmoodi ◽  
Alireza Khoshdel ◽  
...  

Background and objectives: Quercetin is a naturally occurring phenolic compound abundantly present in plants as a secondary metabolite. The purpose of this study was to investigate the effect of quercetin on improving RINm5F β-insulinemia cell viability, glucose-stimulated insulin secretion (GSIS), and cell insulin content in the presence or absence of streptozotocin (STZ). Methods: This experimental study was conducted on RINm5F β-insulinemia cell line. The cell viability was evaluated by MTT assay. The necrosis was confirmed by flowcytometry and insulin ELISA kit was used to measure the GSIS level and cell insulin content. It should be noted that for testing of cells by 50μM of quercetin, simultaneous treatment and pre-treatment of quercetin were performed in the presence of STZ (20mM). Results: The quercetin was able to improve the viability of RINm5F cells in the presence of STZ and to increase the GSIS level and cell insulin content under STZ and glucotoxic conditions Conclusion: The quercetin seems to have beneficial effects on β-cells, especially the synthesis and secretion of insulin. In addition to the therapeutic effect, given the low toxicity of this flavonoid and the results of this study, the quercetin as a preventive agent may play an important role in maintaining the health of β-cells in people at risk of diabetes.


Author(s):  
Caitlin N Cadaret ◽  
Robert J Posont ◽  
Rebecca M Swanson ◽  
Joslyn K Beard ◽  
Rachel L Gibbs ◽  
...  

Abstract In humans and animals, intrauterine growth restriction (IUGR) results from fetal programming responses to poor intrauterine conditions. Chronic fetal hypoxemia elevates circulating catecholamines, which reduces skeletal muscle β2 adrenoceptor content and contributes to growth and metabolic pathologies in IUGR-born offspring. Our objective was to determine whether intermittent maternofetal oxygenation during late gestation would improve neonatal growth and glucose metabolism in IUGR-born lambs. Pregnant ewes were housed at 40°C from the 40 th to 95 th d of gestational age (dGA) to produce IUGR-born lambs (n = 9). A 2 nd group of IUGR-born lambs received prenatal O2 supplementation via maternal O2 insufflation (100% humidified O2, 10 L/min) for 8 h/d from dGA 130 to parturition (IUGR+O2, n = 10). Control lambs (n = 15) were from pair-fed thermoneutral ewes. All lambs were weaned at birth, hand-reared, and fitted with hindlimb catheters at d 25. Glucose-stimulated insulin secretion (GSIS) and hindlimb hyperinsulinemic-euglycemic clamp (HEC) studies were performed at d 28 and 29, respectively. At d 30, lambs were euthanized and ex vivo HEC studies were performed on isolated muscle. Without maternofetal oxygenation, IUGR lambs were 40% lighter (P < 0.05) at birth and maintained slower (P < 0.05) growth rates throughout the neonatal period compared to controls. At 30 d of age, IUGR lambs had lighter (P < 0.05) hindlimbs and flexor digitorum superficialis (FDS) muscles. IUGR+O2 lambs exhibited improved (P < 0.05) birthweight, neonatal growth, hindlimb mass, and FDS mass compared to IUGR lambs. Hindlimb insulin-stimulated glucose utilization and oxidation rates were reduced (P < 0.05) in IUGR but not IUGR+O2 lambs. Ex vivo glucose oxidation rates were less (P < 0.05) in muscle from IUGR but not IUGR+O2 lambs. Surprisingly, β2 adrenoceptor content and insulin responsiveness were reduced (P < 0.05) in muscle from IUGR and IUGR+O2 lambs compared to controls. In addition, glucose-stimulated insulin secretion was reduced (P < 0.05) in IUGR lambs and only modestly improved (P < 0.05) in IUGR+O2. Insufflation of O2 also increased (P < 0.05) acidosis and hypercapnia in dams, perhaps due to the use of 100% O2 rather than a gas mixture with a lesser O2 percentage. Nevertheless, these findings show that intermittent maternofetal oxygenation during late gestation improved postnatal growth and metabolic outcomes in IUGR lambs without improving muscle β2 adrenoceptor content.


2021 ◽  
Author(s):  
Kyle E. Harvey ◽  
Emily K. LaVigne ◽  
Mohd S. Dar ◽  
Evan P.S. Pratt ◽  
Amy E. Salyer ◽  
...  

The role of ER Ca2+ release via ryanodine receptors (RyR) in pancreatic β-cell function is not well defined. Deletion of RyR2 from the rat insulinoma INS-1 (RyR2KO) enhanced the Ca2+ integral (AUC) stimulated by 7.5 mM glucose, and rendered it sensitive to block by the IP3 receptor inhibitor xestospongin C, coincident with reduced levels of the protein IP3 Receptor Binding protein released with Inositol 1,4,5 Trisphosphate (IRBIT; aka AHCYL1). Deletion of IRBIT from INS-1 cells (IRBITKO) increased the Ca2+ AUC in response to 7.5 mM glucose and induced xestospongin sensitivity. Insulin content and basal (2.5 mM glucose) and 7.5 mM glucose-stimulated insulin secretion were reduced in RyR2KO cells and more modestly reduced in IRBITKO cells compared to controls. INS2 mRNA levels were reduced in both RyR2KO and IRBITKO cells, but INS1 mRNA levels were specifically decreased in RyR2KO cells. Nuclear localization of S-adenosylhomocysteinase (AHCY) was increased in RyR2KO and IRBITKO cells. DNA methylation of the INS1 and INS2 gene promotor regions was very low, and not different among RyR2KO, IRBITKO, and controls. In contrast, exon 2 of the INS1 and INS2 genes was more extensively methylated in RyR2KO and IRBITKO cells than in controls. Proteomics analysis using LC-MS/MS revealed that deletion of RyR2 or IRBIT resulted in differential regulation of 314 and 137 proteins, respectively, with 41 in common. These results suggest that RyR2 regulates IRBIT levels and activity in INS-1 cells, and together maintain insulin content and secretion, and regulate the proteome, perhaps via DNA methylation.


2021 ◽  
Author(s):  
Shreya Tiwary ◽  
Hemant Kumar ◽  
Mohan L Verma ◽  
Deepti Pateria

Abstract Diabetes is a disease found in every 1 out of 4 people in the world. The glucose molecule is one of the sources of energy in the body and the lack of the digestion of glucose causes diabetes type 1 and type 2. Arginine and Cysteine is a nonessential amino acid that contains sulfur and help to maintain the metabolisms of humans. We explored the Glucose-Arginine (Glc-arg) and Glucose-Cysteine (Glc-cys) molecules by finding their structural properties, electronic properties, chemical reactivity, mechanical strength and transport properties because these non-essential amino acids molecules inhibit glucose-stimulated insulin secretion. Density functional theory (DFT) have been implemented to study all the properties of Glc-arg and Glc-cys using SIESTA software. Glucose-Arginine (Glc-arg) inhibits a large percentage of glucose secretion and shows high chemical reactivity.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kathryn P Trogden ◽  
Justin S Lee ◽  
Kai M Bracey ◽  
Kung-Hsien Ho ◽  
Hudson McKinney ◽  
...  

Heterogeneity of glucose-stimulated insulin secretion (GSIS) in pancreatic islets is physiologically important but poorly understood. Here, we utilize mouse islets to determine how microtubules affect secretion toward the vascular extracellular matrix at single cell and subcellular levels. Our data indicate that microtubule stability in the β-cell population is heterogenous, and that GSIS is suppressed in cells with highly stable microtubules. Consistently, microtubule hyper-stabilization prevents, and microtubule depolymerization promotes capacity of single β-cell for GSIS. Analysis of spatiotemporal patterns of secretion events shows that microtubule depolymerization activates otherwise dormant β-cells via initiation of secretion clusters (hot spots). Microtubule depolymerization also enhances secretion from individual cells, introducing both additional clusters and scattered events. Interestingly, without microtubules, the timing of clustered secretion is dysregulated, extending the first phase of GSIS and causing oversecretion. In contrast, glucose-induced Ca2+ influx was not affected by microtubule depolymerization yet required for secretion under these conditions, indicating that microtubule-dependent regulation of secretion hot spots acts in parallel with Ca2+ signaling. Our findings uncover a novel microtubule function in tuning insulin secretion hot spots, which leads to accurately measured and timed response to glucose stimuli and promotes functional β-cell heterogeneity.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6886
Author(s):  
Zheling Feng ◽  
Zhujun Fang ◽  
Cheng Chen ◽  
Chi Teng Vong ◽  
Jiali Chen ◽  
...  

To identify the chemical components responsible for the anti-hyperglycemic effect of Cyclocarya paliurus (Batal.) Iljinsk (Juglandaceae) leaves, an ethanol extract (CPE) and a water extract (CPW) of C. paliurus leaves, as well as their total flavonoids (CPF), triterpenoids (CPT) and crude polysaccharides (CPP), were prepared and assessed on streptozotocin (STZ)-induced diabetic mice. After being orally administrated once a day for 24 days, CPF (300 mg/kg), CPP (180 mg/kg), or CPF+CPP (300 mg/kg CPF + 180 mg/kg CPP) treatment reversed STZ-induced body weight and muscle mass losses. The glucose tolerance tests and insulin tolerance tests suggested that CPF, CPP, and CPF+CPP showed anti-hyperglycemic effect in STZ-induced diabetic mice. Furthermore, CPF enhances glucose-stimulated insulin secretion in MIN6 cells and insulin-stimulated glucose uptake in C2C12 myotubes. CPF and CPP suppressed inflammatory cytokine levels in STZ-induced diabetic mice. Additionally, CPF and CPP improved STZ-induced diabetic nephropathy assessed by H&E staining, blood urea nitrogen content, and urine creatinine level. The molecular networking and Emperor analysis results indicated that CPF showed potential anti-hyperglycemic effects, and HPLC–MS/MS analysis indicated that CPF contains 3 phenolic acids and 9 flavonoids. In contrast, CPT (650 mg/kg) and CPC (300 mg/kg CPF + 180 mg/kg CPP + 650 mg/kg CPT) did not show anti-hyperglycemic effect. Taken together, polysaccharides and flavonoids are responsible for the anti-hyperglycemic effect of C. paliurus leaves, and the clinical application of C. paliurus need to be refined.


2021 ◽  
Author(s):  
Jones K. Ofori ◽  
Alexandros Karagiannopoulos ◽  
Mototsugu Nagao ◽  
Efraim Westholm ◽  
Shaima Ramadan ◽  
...  

MicroRNAs (miRNAs) are part of deregulated insulin secretion in type 2 diabetes (T2D) development. Rodent models have suggested miR-200c to be involved, but the role and potential as therapeutic target of this miRNA in human islets is not clear. Here we report increased expression of miR-200c in islets from T2D as compared with non-diabetic (ND) donors and display results showing reduced glucose-stimulated insulin secretion in EndoC-βH1 cells overexpressing miR-200c. We identify transcription factor ETV5 as the top rank target of miR-200c in human islets using TargetScan in combination with Pearson correlation analysis of miR-200c and mRNA expression data from the same human donors. Among other targets were JAZF1, as earlier shown in miR-200 knockout mice. Accordingly, linear model analysis of ETV5 and JAZF1 gene expression showed reduced expression of both genes in islets from human T2D donors. Western blot analysis confirmed the reduced expression of ETV5 on protein level in EndoC-βH1 cells overexpressing miR-200c and Luciferase assay validated ETV5 as a direct target of miR-200c. Finally, LNA knockdown of miR-200c (LNA200c) increased glucose-stimulated insulin secretion in islets from T2D donors ~3-fold. Our data reveal a vital role of the miR-200c-ETV5 axis in beta cell dysfunction and pathophysiology of T2D.


Sign in / Sign up

Export Citation Format

Share Document