supported ionic liquid membranes
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 28)

H-INDEX

29
(FIVE YEARS 5)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 413
Author(s):  
Bruna F. Soares ◽  
Daniil R. Nosov ◽  
José M. Pires ◽  
Andrey A. Tyutyunov ◽  
Elena I. Lozinskaya ◽  
...  

This work aims to explore the gas permeation performance of two newly-designed ionic liquids, [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2], in supported ionic liquid membranes (SILM) configuration, as another effort to provide an overall insight on the gas permeation performance of functionalized-ionic liquids with the [C2mim]+ cation. [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2] single gas separation performance towards CO2, N2, and CH4 at T = 293 K and T = 308 K were measured using the time-lag method. Assessing the CO2 permeation results, [C2mim][CF3BF3] showed an undermined value of 710 Barrer at 293.15 K and 1 bar of feed pressure when compared to [C2mim][BF4], whereas for the [C2mim][CF3SO2C(CN)2] IL an unexpected CO2 permeability of 1095 Barrer was attained at the same experimental conditions, overcoming the results for the remaining ILs used for comparison. The prepared membranes exhibited diverse permselectivities, varying from 16.9 to 22.2 for CO2/CH4 and 37.0 to 44.4 for CO2/N2 gas pairs. The thermophysical properties of the [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2] ILs were also determined in the range of T = 293.15 K up to T = 353.15 K at atmospheric pressure and compared with those for other ILs with the same cation and anion’s with similar chemical moieties.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 460
Author(s):  
Zenon Ziobrowski ◽  
Adam Rotkegel

The comparison study of CO2 removal efficiency from flue gases at low pressures and temperatures is presented, based on commonly used methods and materials. Our own experimental results were compared and analyzed for different methods of CO2 removal from flue gases: absorption in a packed column, adsorption in a packed column and membrane separation on polymeric and ceramic membranes, as well as on the developed supported ionic liquid membranes (SILMs). The efficiency and competitiveness comparison of the investigated methods showed that SILMs obtained by coating of the polydimethylsiloxane (PDMS) membrane with 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]) exhibit a high ideal CO2/N2 selectivity of 152, permeability of 2400 barrer and long term stability. Inexpensive and selective SILMs were prepared applying commercial membranes. Under similar experimental conditions, the absorption in aqueous Monoethanolamine (MEA) solutions is much faster than in ionic liquids (ILs), but gas and liquid flow rates in packed column sprayed with IL are limited due to the much higher viscosity and lower diffusion coefficient of IL. For CO2 adsorption on activated carbons impregnated with amine or IL, only a small improvement in the adsorption properties was achieved. The experimental research was compared with the literature data to find a feasible solution based on commercially available methods and materials.


Author(s):  
Aigerim Baimoldina ◽  
Fan Yang ◽  
Kalyana Kolla ◽  
Patrick Altemose ◽  
Bingchen Wang ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3704
Author(s):  
Yaroslav L. Kobzar ◽  
Ghania Azzouz ◽  
Hashim Albadri ◽  
Jocelyne Levillain ◽  
Isabelle Dez ◽  
...  

In this work, the design and characterization of new supported ionic liquid membranes, as medium-temperature polymer electrolyte membranes for fuel-cell application, are described. These membranes were elaborated by the impregnation of porous polyimide Matrimid® with different synthesized protic ionic liquids containing polymerizable vinyl, allyl, or methacrylate groups. The ionic liquid polymerization was optimized in terms of the nature of the used (photo)initiator, its quantity, and reaction duration. The mechanical and thermal properties, as well as the proton conductivities of the supported ionic liquid membranes were analyzed in dynamic and static modes, as a function of the chemical structure of the protic ionic liquid. The obtained membranes were found to be flexible with Young’s modulus and elongation at break values were equal to 1371 MPa and 271%, respectively. Besides, these membranes exhibited high thermal stability with initial decomposition temperatures > 300 °C. In addition, the resulting supported membranes possessed good proton conductivity over a wide temperature range (from 30 to 150 °C). For example, the three-component Matrimid®/vinylimidazolium/polyvinylimidazolium trifluoromethane sulfonate membrane showed the highest proton conductivity—~5 × 10−2 mS/cm and ~0.1 mS/cm at 100 °C and 150 °C, respectively. This result makes the obtained membranes attractive for medium-temperature fuel-cell application.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 359
Author(s):  
László Koók ◽  
Piroska Lajtai-Szabó ◽  
Péter Bakonyi ◽  
Katalin Bélafi-Bakó ◽  
Nándor Nemestóthy

Hydrophobic ionic liquids (IL) may offer a special electrolyte in the form of supported ionic liquid membranes (SILM) for microbial fuel cells (MFC) due to their advantageous mass transfer characteristics. In this work, the proton and ion transfer properties of SILMs made with IL containing imidazolium cation and [PF6]− and [NTf2]− anions were studied and compared to Nafion. It resulted that both ILs show better proton mass transfer and diffusion coefficient than Nafion. The data implied the presence of water microclusters permeating through [hmim][PF6]-SILM to assist the proton transfer. This mechanism could not be assumed in the case of [NTf2]− containing IL. Ion transport numbers of K+, Na+, and H+ showed that the IL with [PF6]− anion could be beneficial in terms of reducing ion transfer losses in MFCs. Moreover, the conductivity of [bmim][PF6]-SILM at low electrolyte concentration (such as in MFCs) was comparable to Nafion.


Sign in / Sign up

Export Citation Format

Share Document