low detection limit
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 109)

H-INDEX

27
(FIVE YEARS 10)

2021 ◽  
Vol 9 ◽  
Author(s):  
Qin Hu ◽  
Jie Qin ◽  
Xiao-Feng Wang ◽  
Guang-Ying Ran ◽  
Qiang Wang ◽  
...  

A non-enzymatic electrochemical sensor for glucose detection is executed by using a conductive metal–organic framework (MOF) Cu-MOF, which is built from the 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) ligand and copper acetate by hydrothermal reaction. The Cu-MOF demonstrates superior electrocatalytic activity for glucose oxidation under alkaline pH conditions. As an excellent non-enzymatic sensor, the Cu-MOF grown on Cu foam (Cu-MOF/CF) displays an ultra-low detection limit of 0.076 μM through a wide concentration range (0.001–0.95 mM) and a strong sensitivity of 30,030 mA μM−1 cm−2. Overall, the Cu-MOF/CF exhibits a low detection limit, high selectivity, excellent stability, fast response time, and good practical application feasibility for glucose detection and can promote the development of MOF materials in the field of electrochemical sensors.


2021 ◽  
Vol 19 (3) ◽  
Author(s):  
AbduRahman Hosseinifar ◽  
Masoud Ghanei-Motlagh ◽  
Maryam Fayazi

Background: The reliable and easy-to-operate detection of hydrogen peroxide (H2O2) has attracted extensive attention in the fields of biomedicine, food security, and environmental analysis. Objectives: In this work, a novel electrochemical method was proposed for H2O2 monitoring using a carbon paste electrode (CPE) modified with MnO2/sepiolite nanocomposite. Methods: MnO2/sepiolite material was characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) technique. The modified CPE was employed for the amperometric monitoring of H2O2 in human serum samples. Results: Electrochemical data showed that the MnO2/sepiolite-CPE displays a high peak current towards H2O2 oxidation. A linear range from 5 to 700 μM and a low detection limit of 0.8 μM for H2O2 were obtained with the proposed sensor. Besides, the electrode depicted excellent reproducibility and anti-interferant ability, promising the applicability of this electrochemical method in practical analyses. Conclusions: This work introduced a new and effective enzyme-less H2O2 sensor based on the MnO2/sepiolite nanocomposite modified CPE. The suggested sensor showed good sensitivity for the rapid detection of H2O2 in a wide linear range with a low detection limit and satisfactory reproducibility, which made it practical for the analysis of hydrogen H2O2 in real samples.


2021 ◽  
pp. 2109458
Author(s):  
Xin He ◽  
Mengling Xia ◽  
Haodi Wu ◽  
Xinyuan Du ◽  
Zihao Song ◽  
...  

2021 ◽  
Vol 188 (11) ◽  
Author(s):  
Xianghua Zeng ◽  
Wenwen Jiang ◽  
Geoffrey I. N. Waterhouse ◽  
Xiaohui Jiang ◽  
Zhiming Zhang ◽  
...  

2021 ◽  
pp. 130847
Author(s):  
Na wang ◽  
Rongrong Jin ◽  
Yue Zhou ◽  
Liupeng Zhao ◽  
Tianshuang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document