fundamental string
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 1)

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 480
Author(s):  
Nick E. Mavromatos

Several aspects of torsion in string-inspired cosmologies are reviewed. In particular, its connection with fundamental, string-model independent, axion fields associated with the massless gravitational multiplet of the string are discussed. It is argued in favour of the role of primordial gravitational anomalies coupled to such axions in inducing inflation of a type encountered in the “Running-Vacuum-Model (RVM)” cosmological framework, without fundamental inflaton fields. The gravitational-anomaly terms owe their existence to the Green–Schwarz mechanism for the (extra-dimensional) anomaly cancellation, and may be non-trivial in such theories in the presence of (primordial) gravitational waves at early stages of the four-dimensional string universe (after compactification). The paper also discusses how the torsion-induced stringy axions can acquire a mass in the post inflationary era, due to non-perturbative effects, thus having the potential to play the role of (a component of) dark matter in such models. Finally, the current-era phenomenology of this model is briefly described with emphasis placed on the possibility of alleviating tensions observed in the current-era cosmological data. A brief phenomenological comparison with other cosmological models in contorted geometries is also made.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Andreas Athenodorou ◽  
Michael Teper

Abstract We calculate the low-lying glueball spectrum, several string tensions and some properties of topology and the running coupling for SU(N) lattice gauge theories in 3 + 1 dimensions. We do so for 2 ≤ N ≤ 12, using lattice simulations with the Wilson plaquette action, and for glueball states in all the representations of the cubic rotation group, for both values of parity and charge conjugation. We extrapolate these results to the continuum limit of each theory and then to N = ∞. For a number of these states we are able to identify their continuum spins with very little ambiguity. We calculate the fundamental string tension and k = 2 string tension and investigate the N dependence of the ratio. Using the string tension as the scale, we calculate the running of a lattice coupling and confirm that g2(a) ∝ 1/N for constant physics as N → ∞. We fit our calculated values of a√σ with the 3-loop β-function, and extract a value for $$ {\Lambda}_{\overline{MS}} $$ Λ MS ¯ , in units of the string tension, for all our values of N, including SU(3). We use these fits to provide analytic formulae for estimating the string tension at a given lattice coupling. We calculate the topological charge Q for N ≤ 6 where it fluctuates sufficiently for a plausible estimate of the continuum topological susceptibility. We also calculate the renormalisation of the lattice topological charge, ZQ(β), for all our SU(N) gauge theories, using a standard definition of the charge, and we provide interpolating formulae, which may be useful in estimating the renormalisation of the lattice θ parameter. We provide quantitative results for how the topological charge ‘freezes’ with decreasing lattice spacing and with increasing N. Although we are able to show that within our typical errors our glueball and string tension results are insensitive to the freezing of Q at larger N and β, we choose to perform our calculations with a typical distribution of Q imposed upon the fields so as to further reduce any potential systematic errors.


Author(s):  
Koichi Nagasaki

We find the probe D5-brane solution on the black hole space–time which is asymptomatically [Formula: see text]. These black holes have spherical, hyperbolic and toroidal structures. Depending on the gauge flux on the D5-brane, the D5-brane behaves differently. By adding the fundamental string, the potential energy of the interface solution and the Wilson loop is given in the case of nonzero gauge flux.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Tetsuji Kimura ◽  
Shin Sasaki ◽  
Kenta Shiozawa

Abstract We study the membrane wrapping mode corrections to the Kaluza-Klein (KK) 6-brane in eleven dimensions. We examine the localized KK6-brane in the extended space in E7(7) exceptional field theory. In order to discuss the physical origin of the localization in the extended space, we consider a probe M2-brane in eleven dimensions. We show that a three-dimensional $$ \mathcal{N} $$ N = 4 gauge theory is naturally interpreted as a membrane generalization of the two-dimensional $$ \mathcal{N} $$ N = (4, 4) gauged linear sigma model for the fundamental string. We point out that the vector field in the $$ \mathcal{N} $$ N = 4 model is identified as a dual coordinate of the KK6-brane geometry. We find that the BPS vortex in the gauge theory gives rise to the violation of the isometry along the dual direction. We then show that the vortex corrections are regarded as an instanton effect in M-theory induced by the probe M2-brane wrapping around the M-circle.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Si-wen Li

AbstractUsing the gauge-gravity duality, we study the holographic Schwinger effect by performing the potential analysis on the confining D3- and D4-brane background with D-instantons then evaluate the pair production/decay rate by taking account into a fundamental string and a single flavor brane respectively. The two confining backgrounds with D-instantons are obtained from the black D(-1)–D3 and D0–D4 solution with a double Wick rotation. The total potential and pair production/decay rate in the Schwinger effect are calculated numerically by examining the NG action of a fundamental string and the DBI action of a single flavor brane all in the presence of an electric field. In both backgrounds our numerical calculation agrees with the critical electric field evaluated from the DBI action and shows the potential barrier is increased by the presence of the D-instantons, thus the production/decay rate is suppressed by the D-instantons. The interpretation is that particles in the dual field theory could acquire an effective mass through the Chern-Simons interaction or the theta term due to the presence of D-instantons so that the pair production/decay rate in Schwinger effect is suppressed since it behaves as $$e^{-m^{2}}$$ e - m 2 . This conclusion is in agreement with the previous results obtained in the deconfined D(-1)–D3 background at zero temperature limit and from the approach of the flavor brane in the D0–D4 background. In this sense, this work may be also remarkable to study the phase transition in Maxwell–Chern–Simons theory and observable effects by the theta angle in QCD.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Yu-Ting Zhou ◽  
Xiao-Mei Kuang ◽  
Jian-Pin Wu

AbstractIn this work, we study the computational complexity of massive gravity theory via the “Complexity = Action” conjecture. Our system contains a particle moving on the boundary of the black hole spacetime. It is dual to inserting a fundamental string in the bulk background. Then this string would contribute a Nambu–Goto term, such that the total action is composed of the Einstein–Hilbert term, Nambu–Goto term and the boundary term. We shall investigate the time development of this system, and mainly discuss the features of the Nambu–Goto term affected by the graviton mass and the horizon curvature in different dimensions. Our study could contribute interesting properties of complexity.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Emil J. Martinec ◽  
Stefano Massai ◽  
David Turton

Abstract We explore the stringy structure of 1/2-BPS bound states of NS fivebranes carrying momentum or fundamental string charge, in the decoupling limits leading to little string theory and to AdS3/CFT2 duality. We develop an exact worldsheet description of these states using null-gauged sigma models, and illustrate the construction by deriving the closed-form solution sourced by an elliptical NS5-F1 supertube. The Calabi-Yau/Landau-Ginsburg correspondence maps this geometrical worldsheet description to a non-compact LG model whose superpotential is determined by the fivebrane source configuration. Singular limits of the 1/2-BPS configuration space result when the fivebrane worldvolume self-intersects, as can be seen from both sides of the CY/LG duality — on the Landau-Ginsburg side from the degeneration of the superpotential(s), and on the geometrical side from an analysis of D-brane probes. These singular limits are a portal to black hole formation via the condensation of the branes that are becoming massless, and thus exhibit in the gravitational bulk description the central actors in the non-gravitational dual theory underlying black hole thermodynamics.


2020 ◽  
Vol 35 (25) ◽  
pp. 2050152
Author(s):  
Koichi Nagasaki

We consider the growth of the action for black hole space–time with a fundamental string. Our interest is to find the difference of the behavior between black holes with three different topologies in the scenario of complexity-action conjecture. These black holes have positive, negative and zero curvatures. We would like to calculate the action growth of these systems with a probe fundamental string according to the complexity-action conjecture. We find that for the case where the black holes have the toroidal horizon structure this probe string behaves very differently from the other two cases.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
L. Bianchi ◽  
G. Bliard ◽  
V. Forini ◽  
L. Griguolo ◽  
D. Seminara

Abstract We study local operator insertions on 1/2-BPS line defects in ABJM theory. Specifically, we consider a class of four-point correlators in the CFT1 with SU(1, 1|3) super- conformal symmetry defined on the 1/2-BPS Wilson line. The relevant insertions belong to the short supermultiplet containing the displacement operator and correspond to fluctuations of the dual fundamental string in AdS4× ℂP3 ending on the line at the boundary. We use superspace techniques to represent the displacement supermultiplet and we show that superconformal symmetry determines the four-point correlators of its components in terms of a single function of the one-dimensional cross-ratio. Such function is highly constrained by crossing and internal consistency, allowing us to use an analytical bootstrap approach to find the first subleading correction at strong coupling. Finally, we use AdS/CFT to compute the same four-point functions through tree-level AdS2 Witten diagrams, producing a result that is perfectly consistent with the bootstrap solution.


2018 ◽  
Vol 191 ◽  
pp. 04011 ◽  
Author(s):  
Vladimir Vechernin

In the framework of the quark-gluon string model we consider the various fluctuation and correlation observables used in the analysis of the multiparticle production in hadronic interactions at high energy. We express these observables through the fundamental string characteristics and analyze their resulting properties: the dependence on the width of observation window(s), the range of the correlation in rapidity, the intensive or strongly intensive behavior. To take into account the influence of a string fusion processes on the string characteristics and on the behavior of the observables. we use the version of string model with a lattice (grid) in the impact parameter plane. In particular we show that the observable between multiplicities in two acceptance windows separated in rapidity, which is a strongly intensive in the case with independent identical strings, loses this property, when we take into account the string fusion and the formation of strings of a few different types takes place in a collision.


Sign in / Sign up

Export Citation Format

Share Document