europium nanoparticles
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Moli Yin ◽  
Yuanwang Nie ◽  
Hao Liu ◽  
Lei Liu ◽  
Lu Tang ◽  
...  

Abstract Background AKI is related to severe adverse outcomes and mortality with Coronavirus Disease 2019 (COVID-19) patients, that early diagnosed and intervened is imperative. Neutrophil gelatinase-associated lipocalin (NGAL) is one of the most promising biomarkers for detection of acute kidney injury (AKI), but current detection methods are inadequacy, so more rapid, convenient and accuracy methods are needed to detect NGAL for early diagnosis of AKI. Herein, we established a rapid, reliable and accuracy lateral flow immunoassay (LFIA) based on europium nanoparticles (EU-NPS) for the detection of NGAL in human urine specimens. Methods A double-antibody sandwich immunofluorescent assay using europium doped nanoparticles was employed and the NGAL monoclonal antibodies (MAbs) conjugate as labels were generated by optimizing electric fusion parameters. Eighty-three urine samples were used to evaluate the clinical application efficiency of this method. Results The quantitative detection range of NGAL in AKI was 1-3000 ng/mL, and the detection sensitization was 0.36 ng/mL. The coefficient of variation (CV) of intra-assay and inter-assay were 2.57-4.98 % and 4.11-7.83 %, respectively. Meanwhile, the correlation coefficient between europium nanoparticles-based lateral fluorescence immunoassays (EU-NPS-LFIA) and ARCHITECT analyzer was significant (R2 = 0.9829, n = 83, p < 0.01). Conclusions Thus, a faster and easier operation quantitative assay of NGAL for AKI has been established, which is very important and meaningful to diagnose the early AKI, suggesting that the assay can provide an early warning of final outcome of disease.


2021 ◽  
Author(s):  
Moli Yin ◽  
Yuanwang Nie ◽  
Hao Liu ◽  
Lei Liu ◽  
Lu Tang ◽  
...  

Abstract Background:AKI is related to severe adverse outcomes and mortality with Coronavirus Infection Disease 2019 (COVID-19) patients, that early diagnosed and intervened is imperative. Neutrophil gelatinase-associated lipocalin (NGAL) is one of the most promising biomarkers for detection of acute kidney injury (AKI), but current detection methods are inadequacy, so more rapid, convenient and accuracy methods are needed to detect NGAL for early diagnosis of AKI. Herein, we established a rapid, reliable and accuracy lateral flow immunoassay based on europium nanoparticles (Eu-NPS-LFIA) for the detection of NGAL in human urine specimens. Methods:A double-antibody sandwich immunofluorescent assay using europium doped nanoparticles was employed and the NGAL monoclonal antibodies conjugate as labels were generated by optimizing electric fusion parameters. Eighty-three urine samples were used to evaluate the clinical application efficiency of this method. Results:The quantitative detection range of NGAL in AKI was 1-3000 ng/mL, and the detection sensitization was 0.36 ng/mL. The CV of intra-assay and inter-assay were 2.57%-4.98% and 4.11%-7.83%, respectively. Meanwhile, the correlation coefficient between Eu-NPS-LFIA and ARCHITECT analyzer was significant (R2=0.9829, n=83, p<0.01). Conclusions:Thus, a faster and easier operation quantitative assay of NGAL for AKI has been established, which is very important and meaningful to diagnose the early AKI, suggesting that the assay can provide an early warning of final outcome of disease.


Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 605 ◽  
Author(s):  
Erjing Chen ◽  
Ying Xu ◽  
Biao Ma ◽  
Haifeng Cui ◽  
Chuanxin Sun ◽  
...  

A fluorescent immunochromatographic test strip (FICTS) based on the use of europium nanoparticles (EuNPs) was developed and applied to detect citrinin (CIT) in Monascus fermented food. The sensitivity of the immunoassay to detect CIT was greatly improved by the use of a specific monoclonal antibody to attach EuNPs to form a probe. Under optimum conditions, the visual detection limit was 2.5 ng/mL, and the detection limit of the instrument was 0.05 ng/mL. According to the results, the IC50 was 0.4 ng/mL. Matrix interference from various Monascus fermented foods was investigated in food sample detection. The immunosensor also demonstrated high recoveries (86.8–113.0%) and low relative standard deviations (RSDs) (1.8–15.3%) when testing spiked Monascus fermented food. The detection results of this method showed a good correlation (R2 > 0.98) with high-performance liquid chromatography (HPLC). The results showed that the FICTS method could be used as a rapid, sensitive method to detect CIT in Monascus fermented food.


2019 ◽  
Vol 493 ◽  
pp. S153
Author(s):  
S. Jain ◽  
N. Nadeem ◽  
K. Huhtinen ◽  
K. Pettersson ◽  
K. Gidwani

2018 ◽  
Vol 19 (10) ◽  
pp. 3013 ◽  
Author(s):  
Trinh Thuy Tien ◽  
Hyun Park ◽  
Hien Tuong ◽  
Seung-Taek Yu ◽  
Du-Young Choi ◽  
...  

Human respiratory syncytial virus (RSV) is one of the most common viruses infecting the respiratory tracts of infants. The rapid and sensitive detection of RSV is important to minimize the incidence of infection. In this study, novel monoclonal antibodies (mAbs; B11A5 and E8A11) against RSV nucleoprotein (NP) were developed and applied to develop a rapid fluorescent immunochromatographic strip test (FICT), employing europium nanoparticles as the fluorescent material. For the FICT, the limits of detection of the antigen and virus were 1.25 µg/mL and 4.23 × 106 TCID50/mL, respectively, corresponding to 4.75 × 106 ± 5.8 ×105 (mean ± SD) RNA copy numbers per reaction mixture for RSV NP. A clinical study revealed a sensitivity of 90% (18/20) and specificity of 98.18% (108/110) for RSV detection when comparing the performance to that of reverse transcription polymerase chain reaction (RT-PCR), representing a 15% improvement in sensitivity over the SD Bioline rapid kit. This newly developed FICT could be a useful tool for the rapid diagnosis of RSV infection.


Nanoscale ◽  
2012 ◽  
Vol 4 (11) ◽  
pp. 3551 ◽  
Author(s):  
Lu Tian ◽  
Zhichao Dai ◽  
Lin Zhang ◽  
Ruoyu Zhang ◽  
Zhiqiang Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document