dna binding complexes
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 3)

H-INDEX

17
(FIVE YEARS 0)

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joshua Disatham ◽  
Lisa Brennan ◽  
Daniel Chauss ◽  
Jason Kantorow ◽  
Behdad Afzali ◽  
...  

Abstract Background During eye lens development the embryonic vasculature regresses leaving the lens without a direct oxygen source. Both embryonically and throughout adult life, the lens contains a decreasing oxygen gradient from the surface to the core that parallels the natural differentiation of immature surface epithelial cells into mature core transparent fiber cells. These properties of the lens suggest a potential role for hypoxia and the master regulator of the hypoxic response, hypoxia-inducible transcription factor 1 (HIF1), in the regulation of genes required for lens fiber cell differentiation, structure and transparency. Here, we employed a multiomics approach combining CUT&RUN, RNA-seq and ATACseq analysis to establish the genomic complement of lens HIF1α binding sites, genes activated or repressed by HIF1α and the chromatin states of HIF1α-regulated genes. Results CUT&RUN analysis revealed 8375 HIF1α-DNA binding complexes in the chick lens genome. One thousand one hundred ninety HIF1α-DNA binding complexes were significantly clustered within chromatin accessible regions (χ2 test p < 1 × 10− 55) identified by ATACseq. Formation of the identified HIF1α-DNA complexes paralleled the activation or repression of 526 genes, 116 of which contained HIF1α binding sites within 10kB of the transcription start sites. Some of the identified HIF1α genes have previously established lens functions while others have novel functions never before examined in the lens. GO and pathway analysis of these genes implicate HIF1α in the control of a wide-variety of cellular pathways potentially critical for lens fiber cell formation, structure and function including glycolysis, cell cycle regulation, chromatin remodeling, Notch and Wnt signaling, differentiation, development, and transparency. Conclusions These data establish the first functional map of genomic HIF1α-DNA complexes in the eye lens. They identify HIF1α as an important regulator of a wide-variety of genes previously shown to be critical for lens formation and function and they reveal a requirement for HIF1α in the regulation of a wide-variety of genes not yet examined for lens function. They support a requirement for HIF1α in lens fiber cell formation, structure and function and they provide a basis for understanding the potential roles and requirements for HIF1α in the development, structure and function of more complex tissues.


2021 ◽  
Author(s):  
Joshua Disatham ◽  
Lisa Brennan ◽  
Daniel Chauss ◽  
Jason Kantorow ◽  
Behdad Afzali ◽  
...  

Abstract Background: During eye lens development the fetal vasculature regresses leaving the lens without a direct oxygen source. Both embryonically and throughout adult life, the lens contains a decreasing oxygen gradient from the surface to the core that parallels the natural differentiation of immature surface epithelial cells into mature core transparent fiber cells. These properties of the lens suggest a potential role for hypoxia in the regulation of genes required for mature lens structure and function. Since HIF1α is a master regulator of the hypoxic response, these lens properties also implicate HIF1α as a potential requirement for lens formation and homeostasis. Here, we employed a multiomics approach combining CUT&RUN, RNAseq and ATACseq analysis to establish the genomic complement of lens HIF1α binding sites, genes activated or repressed by HIF1α and the chromatin states of HIF1α-regulated genes.Results: CUT&RUN analysis revealed 8,375 HIF1α-DNA binding complexes in the chick lens genome. 1,190 HIF1α-DNA binding complexes were significantly clustered within chromatin accessible regions (χ2 test p < 1x10-55) identified by ATACseq. Formation of the identified HIF1α-DNA complexes paralleled the activation or repression of 526 genes, 116 of which contained HIF1α binding sites within 10kB of the transcription start sites. Some of the identified HIF1α genes have previously established lens functions while others have novel functions never before examined in the lens. GO and pathway analysis of these genes implicate HIF1α in the control of a wide-variety of cellular pathways potentially critical for lens formation, structure and function including glycolysis, cell cycle regulation, chromatin remodeling, Notch and Wnt signaling, differentiation, development, and transparency. Conclusions: These data establish the first functional map of genomic HIF1α-DNA complexes in the eye lens. They identify HIF1α as an important regulator of a wide-variety of genes previously shown to be critical for lens formation and function and they reveal a requirement for HIF1α in the regulation of a wide-variety of genes not yet examined for lens function. They support a requirement for HIF1α in lens development, structure and function and they provide a basis for understanding the potential roles and requirements for HIF1α in the development, structure and function of more complex tissues.


2020 ◽  
Vol 59 (19) ◽  
pp. 14615-14619
Author(s):  
Jasmin Simon ◽  
Anja Stammler ◽  
Jan Oldengott ◽  
Hartmut Bögge ◽  
Thorsten Glaser

2016 ◽  
Vol 45 (33) ◽  
pp. 13135-13145 ◽  
Author(s):  
Huaiyi Huang ◽  
Pingyu Zhang ◽  
Yu Chen ◽  
Kangqiang Qiu ◽  
Chengzhi Jin ◽  
...  

[Ru(tpy)(N^N)Cl]+ were synthesized for anticancer evolution. Ru2–Ru4 were dual-mode DNA-binding complexes and exhibited higher DNA binding affinity, better cellular uptake efficiency and higher anticancer activity than Ru1.


Blood ◽  
2012 ◽  
Vol 119 (23) ◽  
pp. 5478-5491 ◽  
Author(s):  
Elena Cubedo ◽  
Andrew J. Gentles ◽  
Chuanxin Huang ◽  
Yasodha Natkunam ◽  
Shruti Bhatt ◽  
...  

Abstract LMO2 regulates gene expression by facilitating the formation of multipartite DNA-binding complexes. In B cells, LMO2 is specifically up-regulated in the germinal center (GC) and is expressed in GC-derived non-Hodgkin lymphomas. LMO2 is one of the most powerful prognostic indicators in diffuse large B-cell (DLBCL) patients. However, its function in GC B cells and DLBCL is currently unknown. In this study, we characterized the LMO2 transcriptome and transcriptional complex in DLBCL cells. LMO2 regulates genes implicated in kinetochore function, chromosome assembly, and mitosis. Overexpression of LMO2 in DLBCL cell lines results in centrosome amplification. In DLBCL, the LMO2 complex contains some of the traditional partners, such as LDB1, E2A, HEB, Lyl1, ETO2, and SP1, but not TAL1 or GATA proteins. Furthermore, we identified novel LMO2 interacting partners: ELK1, nuclear factor of activated T-cells (NFATc1), and lymphoid enhancer-binding factor1 (LEF1) proteins. Reporter assays revealed that LMO2 increases transcriptional activity of NFATc1 and decreases transcriptional activity of LEF1 proteins. Overall, our studies identified a novel LMO2 transcriptome and interactome in DLBCL and provides a platform for future elucidation of LMO2 function in GC B cells and DLBCL pathogenesis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3966-3966
Author(s):  
Aditya Chaubey ◽  
Chinavenmeni S. Velu ◽  
Shane Horman ◽  
Anil Jegga ◽  
Monica L. Guzman ◽  
...  

Abstract Abstract 3966 Poster Board III-902 Since oncogenic activation of HoxA9 is induced by multiple chromosomal translocations affecting MLL1 (11q23)(e.g. MLL-Af9) or Nup98 (11p15)(e.g. Nup98-HoxA9 or Nup98-Nsd1), the function of the HoxA9 transcription factor is of critical interest in human acute myeloid leukemia (AML). HoxA9 forms heterodimeric DNA binding complexes with members of the Pbx and/or Meis family of homeodomain proteins. Importantly, the direct transcriptional targets of endogenous HoxA9 that mediate transformation remain largely unknown. The Growth factor independent-1 (Gfi1) transcriptional repressor is known to induce granulopoiesis and inhibit myeloid progenitor proliferation. GFI1 is mutated in patients with severe congenital neutropenia (SCN). SCN patients are at increased risk for AML. In a transcriptional circuit conserved to Drosophila, we have recently shown that Gfi1 represses HoxA9, Meis1 and Pbx1 expression, that Gfi1 and HoxA9 demonstrate dramatic epistatic relationships, and that Gfi1 loss of function is potently preleukemic. Our new bioinformatic, biochemical and expression data reveal microRNA genes to be targets of endogenous HoxA9 versus Gfi1 antagonism. Moreover, these miR are activated by Hox-signaling leukemia oncoproteins. Next, in both murine leukemia models and primary human AML samples, antagomir-mediated inhibition of microRNA function specifically disrupts oncogenic signaling by HoxA9, Nup98-HoxA9 and MLL-Af9 (but not AML-ETO which does not signal through HoxA9). In vivo, antagomir treatment blocked MLL-Af9-initiated leukemia lethality. These data establish microRNA genes as functional downstream targets of endogenous HoxA9, and implicate epigenetic signaling as critical client/mediators of Hox-based leukemia oncoproteins. Disclosures: No relevant conflicts of interest to declare.


Endocrinology ◽  
2007 ◽  
Vol 148 (1) ◽  
pp. 268-278 ◽  
Author(s):  
Jiping Zhang ◽  
Mary Ann Warren ◽  
Suzanne F. Shoemaker ◽  
Margot M. Ip

Nuclear factor κB (NFκB) plays an important role in mammary gland development and breast cancer. We previously demonstrated that TNF stimulates growth of mammary epithelial cells (MEC) in a physiologically relevant three-dimensional primary culture system, accompanied by enhanced DNA-binding of the NFκB p50 homodimer. To further understand the mechanism of TNF-stimulated growth of primary MEC, the requirement for NFκB1/p50, and the role of cyclin D1 in TNF-stimulated growth were examined. TNF induced the formation of DNA-binding complexes of p50 and p52 with their coactivator bcl3 in MEC nuclear extracts. Concomitantly, TNF increased the binding of NFκB proteins to the κB site on the cyclin D1 promoter, and increased expression of cyclin D1 mRNA and protein. Using MEC from p50 null mice, we found that p50 was not required for TNF-induced growth nor for up-regulation of cyclin D1. However, TNF induced a p52/RelB NFκB DNA-binding complex in p50 null MEC nuclear extracts. In addition, we found that in wild-type MEC, TNF stimulated the occupancy of p52 and RelB on the cyclin D1 promoter κB site, whereas p50 was present constitutively. These data suggest that in wild-type MEC, TNF stimulates the interaction of bcl3 with p50 and p52, and the binding of p52, as well as RelB, to cyclin D1 promoter κB sites, and as a consequence, stimulates the growth of MEC. In the absence of p50, p52 and RelB can compensate for p50 in TNF-stimulated growth and cyclin D1 induction in MEC.


1999 ◽  
Vol 19 (4) ◽  
pp. 3051-3061 ◽  
Author(s):  
Wei-Fang Shen ◽  
Sophia Rozenfeld ◽  
Angela Kwong ◽  
Laszlo G. Kömüves ◽  
H. Jeffrey Lawrence ◽  
...  

ABSTRACT Aberrant activation of the HOX, MEIS, and PBX homeodomain protein families is associated with leukemias, and retrovirally driven coexpression of HOXA9 and MEIS1 is sufficient to induce myeloid leukemia in mice. Previous studies have demonstrated that HOX-9 and HOX-10 paralog proteins are unique among HOX homeodomain proteins in their capacity to form in vitro cooperative DNA binding complexes with either the PBX or MEIS protein. Furthermore, PBX and MEIS proteins have been shown to form in vivo heterodimeric DNA binding complexes with each other. We now show that in vitro DNA site selection for MEIS1 in the presence of HOXA9 and PBX yields a consensus PBX-HOXA9 site. MEIS1 enhances in vitro HOXA9-PBX protein complex formation in the absence of DNA and forms a trimeric electrophoretic mobility shift assay (EMSA) complex with these proteins on an oligonucleotide containing a PBX-HOXA9 site. Myeloid cell nuclear extracts produce EMSA complexes which appear to contain HOXA9, PBX2, and MEIS1, while immunoprecipitation of HOXA9 from these extracts results in coprecipitation of PBX2 and MEIS1. In myeloid cells, HOXA9, MEIS1, and PBX2 are all strongly expressed in the nucleus, where a portion of their signals are colocalized within nuclear speckles. However, cotransfection of HOXA9 and PBX2 with or without MEIS1 minimally influences transcription of a reporter gene containing multiple PBX-HOXA9 binding sites. Taken together, these data suggest that in myeloid leukemia cells MEIS1 forms trimeric complexes with PBX and HOXA9, which in turn can bind to consensus PBX-HOXA9 DNA targets.


Sign in / Sign up

Export Citation Format

Share Document