probability density evolution method
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 34)

H-INDEX

15
(FIVE YEARS 4)

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3124
Author(s):  
Zhuo Rong ◽  
Xiang Yu ◽  
Bin Xu ◽  
Xueming Du

The randomness of earthquake excitation has a significant impact on the seismic performance of high earth-rock dams. In this paper, the seismic performance of geosynthetic-reinforced soil structures (GRSS) of high concrete face rockfill dams (CFRDs) is evaluated from the stochastic perspective. Multiple groups of seismic ground motions are generated based on spectral expression-random function non-stationary model. Taking Gushui CFRD as an example, this study calculates the failure probability of each damage level of non-reinforce slopes and reinforce slopes based on generalized probability density evolution method (GPDEM) and reliability analysis is presented though multiple evaluation indicators. The result shows that GRSS can reduce the mild damage of CFRDs during earthquake and restrain the moderate and severe damage. The influence of vertical spacing and length of GRSS on the seismic performance is obtained, which provides a reference for the seismic design and risk analysis of CFRDs.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tao Zhang ◽  
Taimu Jin ◽  
Jun Luo ◽  
Shengyang Zhu ◽  
Kaiyun Wang

Resonance problems encountered in vehicle-bridge interaction (VBI) have attracted widespread concern over the past decades. Due to system random characteristics, the prediction of resonant speeds and responses will become more complicated. To this end, this study presents stochastic analysis on the resonance of railway trains moving over a series of simply supported bridges with consideration of the randomness of system parameters. A train-slab track-bridge (TSB) vertically coupled dynamics model is established following the basic principle of vehicle-track-coupled dynamics. The railway train is composed of multiple vehicles, and each of them is built by seven rigid parts assigned with a total of 10 degrees of freedom. The rail, track slab, and bridge are considered as Euler–Bernoulli beams, and the vibration equations of which are established by the modal superposition method (MSM). Except for the nonlinear wheel-rail interaction based on the Hertz contact theory, the other coupling relations between each subsystem are assumed to be linear elastic. The number theory method is employed to obtain the representative sample point sets of the random parameters, and the flow trajectories of probabilities for the TSB dynamics system are captured by a probability density evolution method (PDEM). Numerical results indicate that the maximum bridge and vehicle responses are mainly dominated by the primary train-induced resonant speed; the last vehicle of a train will be more seriously excited when the bridges are set in resonance by the train; the resonant speeds and responses are rather sensitive to the system randomness, and the possible maximum amplitudes predicted by the PDEM are significantly underestimated by the traditional deterministic method; optimized parameters of the TSB system are preliminary obtained based on the representative point sets and imposed screening conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Dejun Liu ◽  
Lifeng Xin ◽  
Xiaozhen Li ◽  
Jiaxin Zhang

In this paper, a probabilistic model devoted to investigating the dynamic behaviors of train-bridge systems subjected to random track irregularities is presented, in which a train-ballasted track-bridge coupled model with nonlinear wheel-rail contacts is introduced, and then a new approach for simulating a random field of track irregularities is developed; moreover, the probability density evolution method is used to describe the probability transmission from excitation inputs to response outputs; finally, extended analysis from three aspects, that is, stochastic analysis, reliability analysis, and correlation analysis, are conducted on the evaluation and application of the proposed model. Besides, compared to the Monte Carlo method, the high efficiency and the accuracy of this proposed model are validated. Numerical studies show that the ergodic properties of track irregularities on spectra, amplitudes, wavelengths, and phases should be taken into account in stochastic analysis of train-bridge interactions. Since the main contributive factors concerning different dynamic indices are rather different, different failure modes possess no obvious or only weak correlations from the probabilistic perspective, and the first-order reliability theory is suitable in achieving the system reliability.


Sign in / Sign up

Export Citation Format

Share Document