superior craton
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 31)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 364 ◽  
pp. 106339
Author(s):  
Chong Ma ◽  
Mostafa Naghizadeh ◽  
Ademola Adetunji ◽  
Robert W.D. Lodge ◽  
David Snyder ◽  
...  

Author(s):  
Marie A. Kieffer ◽  
Lucie Mathieu ◽  
Pierre Bedeaux ◽  
Damien Gaboury ◽  
Michael A. Hamilton

Magmatism during the maturation phase of Archean greenstone belts produced voluminous tonalite-trondhjemite-granodiorite (TTG) suites, as well as a lesser amount of tonalite-trondhjemite-diorite (TTD) suites. Such TTD suites have recently been recognized in the Archean Abitibi greenstone belt, on the southern flank of the Superior Craton, Canada, but their source(s), differentiation processes and depths of emplacement remain poorly constrained. The Neoarchean Eau Jaune Complex (EJC) lies in the northeastern corner of the Abitibi greenstone belt and represents one of the most voluminous tonalite-dominated and diorite-bearing intrusive suites of the Chibougamau region. This TTD suite comprises six intrusive phases with distinct petrology and chemistry. All units were emplaced as laccolith-like intrusions injected along discontinuities within the volcanic succession at ca. 2724 Ma (U-Pb zircon dating), during the synvolcanic interval (i.e., construction and maturation phase), at a depth of approximately 7–8 km. The most HREE-depleted phases (granodiorite, tonalite and trondhjemite) correspond to magmas that fractionated amphibole and were likely produced by partial melting of a garnet- and titanate-bearing amphibolite, akin to TTG magmas. The least HREE-depleted phases are dioritic in composition and correspond to mantle-derived magmas that may have interacted with TTG melts. This indicates interaction between coeval mantle-derived and crustal melts during the maturation phase of the Abitibi greenstone belt. Models formulated to address the geodynamic evolution of greenstone belts must account for the coeval production of basalt-derived (TTG suites) and mantle-derived (tholeiitic magmatism) melts occasionally interacting to form TTD suites.


2021 ◽  
Vol 362 ◽  
pp. 106310
Author(s):  
Ademola Q. Adetunji ◽  
Ian J. Ferguson ◽  
Rajesh Vayavur ◽  
Saeid Cheraghi ◽  
Mostafa Naghizadeh ◽  
...  
Keyword(s):  

Geology ◽  
2021 ◽  
Author(s):  
Cedric Djeutchou ◽  
Michiel O. de Kock ◽  
Hervé Wabo ◽  
Camilo E. Gaitán ◽  
Ulf Söderlund ◽  
...  

The 1.87–1.84 Ga Black Hills dike swarm of the Kalahari craton (South Africa) is coeval with several regional magmatic provinces used here to resolve the craton’s position during Columbia assembly. We report a new 1850 ± 4 Ma (U-Pb isotope dilution–thermal ionization mass spectrometry [ID-TIMS] on baddeleyite) crystallization age for one dike and new paleomagnetic data for 34 dikes of which 8 have precise U-Pb ages. Results are constrained by positive baked-contact and reversal tests, which combined with existing data produce a 1.87–1.84 Ga mean pole from 63 individual dikes. By integrating paleomagnetic and geochronological data sets, we calculate poles for three magmatic episodes and produce a magnetostratigraphic record. At 1.88 Ga, the Kalahari craton is reconstructed next to the Superior craton so that their ca. 2.0 Ga poles align. As such, magmatism forms part of a radiating pattern with the coeval ca. 1.88 Ga Circum-Superior large igneous province.


Author(s):  
François Turlin ◽  
Stéphane De Souza ◽  
Michel Jébrak ◽  
Pierre-Arthur Groulier ◽  
Jordi Turcotte

The Archean Cheechoo stockwork gold deposit is hosted by a felsic intrusion of tonalitic-granodioritic composition and crosscutting pegmatite dikes in the Eeyou Istchee James Bay area of Quebec, Canada (Archean Superior craton). The evolution of the stockwork is characterized herein using field relationships, vein density, and connectivity measurements on drill core and outcrop zones. The statistical distribution of gold is used to highlight mechanisms of stockwork emplacement and gold mineralization and remobilization. Two statistical populations of gold concentration are present. Population A is represented by gold grades below 1 g/t with a lognormal cumulative frequency. It is widespread in the hydrothermally altered (albite and quartz) and mineralized facies of the pluton. It is controlled by the development of quartz-feldspar-diopside veins as shown by the similar lognormal distribution of grades and vein density and by the correspondence of grades with network connectivity. Diopside and actinolite porphyroblasts in deformed veins within sodic and calcsilicate alteration zones are evidence for auriferous vein emplacement prior to the amphibolite facies peak of metamorphism. Population B (>1 g/t) is erratic and exhibits a strong nugget effect. It is present throughout the mineralized portion of the pluton and in pegmatites. This population is interpreted as the result of gold remobilization during prograde metamorphism and pegmatite emplacement following the metamorphic peak. The pegmatites are interpreted to have scavenged gold emplaced prior to peak metamorphism. These results show the isotropic behavior of the investigated stockwork during regional deformation and its development during the early stages of regional prograde metamorphism.


2021 ◽  
pp. 106204
Author(s):  
Adrian G. Rehm ◽  
Taus R.C. Jørgensen ◽  
Phil C. Thurston ◽  
Harold L. Gibson ◽  
Bruno Lafrance
Keyword(s):  

2021 ◽  
Vol 356 ◽  
pp. 106104
Author(s):  
D.R. Mole ◽  
P.C. Thurston ◽  
J.H. Marsh ◽  
R.A. Stern ◽  
J.A. Ayer ◽  
...  

Author(s):  
David B. Snyder ◽  
Geneviève Savard ◽  
Bruce A. Kjarsgaard ◽  
Aeron Vaillancourt ◽  
Phillips C. Thurston ◽  
...  

2021 ◽  
Author(s):  
Tong Zhou ◽  
Min Chen ◽  
Ziyi Xi ◽  
Jiaqi Li

<p>Cratonic lithosphere is believed to be rigid and less deformed during a long period of time. However, the detailed structure of Cratons may bring information of the complex formation and assemblage process of the continental lithosphere. Here, we present the seismic radial anisotropic structure of the North American Craton (NAC) constrained by a regional full-waveform inversion (FWI) with 465,422 high-quality frequency-dependent travel time misfit measurements with the shortest period of 15 s from both the body wave and surface wave recordings of 5,120 stations and 160 earthquakes located in the contiguous U.S and surrounding regions. Started from an initial model constructed by combining US.2016 and Crust1.0 in the crust and S40RTS (isotropic) in the mantle, we are able to have the optimized crustal structure in terms of initial waveform similarity and get rid of existing features from other radially anisotropic mantle models.</p><p>Our new model reveals the NAC lithosphere with about +2% voigt shear wave speed anomaly and an average thickness of 200–250 km beneath the Superior Craton, and becomes thinner towards the eastern, the southern, and the southwestern margins with a thickness decreased to 100–150 km. The radial anisotropy manifests a layer of higher horizontal shear wave speed V<sub>SH </sub>(ξ=V<sub>SH</sub><sup>2</sup>/V<sub>SV</sub><sup>2</sup>>1) beneath the core of Superior Craton down to around 160 km, where the higher vertical shear wave speed V<sub>SV </sub>(ξ<1) is observed beneath 160 km. Such radial anisotropy layering is also observed in the margin of continental lithosphere but with shallower depth. The radial anisotropic layer matches the receiver function results of mid-lithosphere discontinuities of the Craton cores, and the lithosphere conductivity result. The radial anisotropy layering observation confirms the two-layered lithosphere structure of the NAC, where the upper layer likely represents the original radial anisotropy fabric related to the cooling of the craton core, while the lower layer might be related to the tectonic processes more recently, e.g., accretion . The lithospheric thinning beneath the NAC margins indicates the deformation of the lithosphere and is likely controlled by the large-scale mantle convection, therefore relates to the further modification process of the NAC.</p>


Sign in / Sign up

Export Citation Format

Share Document