musical rhythms
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 39)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 15 ◽  
Author(s):  
Thenille Braun Janzen ◽  
Yuko Koshimori ◽  
Nicole M. Richard ◽  
Michael H. Thaut

Research in basic and clinical neuroscience of music conducted over the past decades has begun to uncover music’s high potential as a tool for rehabilitation. Advances in our understanding of how music engages parallel brain networks underpinning sensory and motor processes, arousal, reward, and affective regulation, have laid a sound neuroscientific foundation for the development of theory-driven music interventions that have been systematically tested in clinical settings. Of particular significance in the context of motor rehabilitation is the notion that musical rhythms can entrain movement patterns in patients with movement-related disorders, serving as a continuous time reference that can help regulate movement timing and pace. To date, a significant number of clinical and experimental studies have tested the application of rhythm- and music-based interventions to improve motor functions following central nervous injury and/or degeneration. The goal of this review is to appraise the current state of knowledge on the effectiveness of music and rhythm to modulate movement spatiotemporal patterns and restore motor function. By organizing and providing a critical appraisal of a large body of research, we hope to provide a revised framework for future research on the effectiveness of rhythm- and music-based interventions to restore and (re)train motor function.


2021 ◽  
Author(s):  
Connor Spiech ◽  
George Sioros ◽  
Tor Endestad ◽  
Anne Danielsen ◽  
Bruno Laeng

Groove, understood as a pleasurable compulsion to move to musical rhythms, typically varies along an inverted U-curve with increasing rhythmic complexity (e.g., syncopation, pickups). Predictive coding accounts posit that moderate complexity drives us to move to reduce sensory prediction errors and model the temporal structure. While musicologists generally distinguish the effects of pickups (anacruses) and syncopations, their difference remains unexplored in groove. We used pupillometry as an index to noradrenergic arousal while subjects listened to and rated drumbeats varying in rhythmic complexity. We replicated the inverted U-shaped relationship between rhythmic complexity and groove and showed this is modulated by musical ability, based on a psychoacoustic beat perception test. The pupil drift rates suggest that groovier rhythms hold attention longer than ones rated less groovy. Moreover, we found complementary effects of syncopations and pickups on groove ratings and pupil size, respectively, discovering a distinct predictive process related to pickups. We suggest that the brain deploys attention to pickups to sharpen subsequent strong beats, augmenting the predictive scaffolding’s focus on beats that reduce syncopations’ prediction errors. This interpretation is in accordance with groove envisioned as an embodied resolution of precision-weighted prediction error.


Author(s):  
Johnny Padulo ◽  
Alin Larion ◽  
Olfa Turki ◽  
Ionel Melenco ◽  
Cristian Popa ◽  
...  

The study aimed to explore the sensitivity and specificity of a new methodological approach related to the musical rhythm for discriminating a competitive Cuban dancer’s (CDCs) level. Thirty CDCs (Age 23.87 ± 1.76 years, body mass 60.33 ± 9.45 kg, stature 1.68 ± 0.07 m) were divided into three groups: beginner (BEG, n = 10), intermediate (INT, n = 10), and advanced (ADV, n = 10) according to their training experience/level. Each dancer was assessed while dancing at three different musical rhythms: fast (118 BPM), medium (96 BPM), and slow (82 BPM). The assessed variables were average heart rate (HRM), peak (HRP), and dancing time (DCT). The ADV group succeeded at all three musical combinations (317, 302, 309 s for 82, 96, 118 BPM). The INT group correctly performed only the first two combinations (304, 304 s for 82, 96 BPM), while a significant time difference was shown at the fast musical rhythm (198 ± 6.64 s) compared to the medium (p < 0.001) and slow rhythms (p < 0.001) respectively. As the speed of the musical rhythms increased, the BEG group was not able to follow the rhythm: their results were 300 ± 1.25 s for the slow musical rhythm, 94.90 ± 12.80 s for the medium musical rhythm and 34.10 ± 5.17 s for the fast musical rhythm (p < 0.001). The HRM and HRP grew along with the increase in musical rhythm for all groups (p < 0.001). The ROC analysis showed a high sensitivity and specificity in discriminating the groups for each rhythm’s condition. The BEG and INT groups showed an AUC = 0.864 (95% CI = 0.864–0.954); INT and ADV showed an AUC = 0.864 (95% CI = 0.864–0.952); BEG and ADV showed an AUC = 0.998 (95% CI = 0.993–1.000). The results of this study provided evidence to support the construct and ecological validity of the time of the musical rhythms related to competitive CDCs. Furthermore, the differences in the performances according to various musical rhythms, fast (118 BPM), medium (96 BPM), and slow (82 BPM), succeeded in discriminating a dancer’s level. Coaches and strength and conditioning professionals should include the Cuban Dance Field Test (CDFT) in their test battery when dealing with talent detection, selection, and development.


2021 ◽  
Vol 11 (11) ◽  
pp. 1546
Author(s):  
Chiara Dondena ◽  
Valentina Riva ◽  
Massimo Molteni ◽  
Gabriella Musacchia ◽  
Chiara Cantiani

Previous evidence has shown that early auditory processing impacts later linguistic development, and targeted training implemented at early ages can enhance auditory processing skills, with better expected language development outcomes. This study focuses on typically developing infants and aims to test the feasibility and preliminary efficacy of music training based on active synchronization with complex musical rhythms on the linguistic outcomes and electrophysiological functioning underlying auditory processing. Fifteen infants participated in the training (RTr+) and were compared with two groups of infants not attending any structured activities during the same time frame (RTr−, N = 14). At pre- and post-training, expressive and receptive language skills were assessed using standardized tests, and auditory processing skills were characterized through an electrophysiological non-speech multi-feature paradigm. Results reveal that RTr+ infants showed significantly broader improvement in both expressive and receptive pre-language skills. Moreover, at post-training, they presented an electrophysiological pattern characterized by shorter latency of two peaks (N2* and P2), reflecting a neural change detection process: these shifts in latency go beyond those seen due to maturation alone. These results provide preliminary evidence on the efficacy of our training in improving early linguistic competences, and in modifying the neural underpinnings of auditory processing in infants.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ulvhild Færøvik ◽  
Karsten Specht ◽  
Kjetil Vikene

Auditory repetition suppression and omission activation are opposite neural phenomena and manifestations of principles of predictive processing. Repetition suppression describes the temporal decrease in neural activity when a stimulus is constant or repeated in an expected temporal fashion; omission activity is the transient increase in neural activity when a stimulus is temporarily and unexpectedly absent. The temporal, repetitive nature of musical rhythms is ideal for investigating these phenomena. During an fMRI session, 10 healthy participants underwent scanning while listening to musical rhythms with two levels of metric complexity, and with beat omissions with different positional complexity. Participants first listened to 16-s-long presentations of continuous rhythms, before listening to a longer continuous presentation with beat omissions quasi-randomly introduced. We found deactivation in bilateral superior temporal gyri during the repeated presentation of the normal, unaltered rhythmic stimulus, with more suppression of activity in the left hemisphere. Omission activation of bilateral middle temporal gyri was right lateralized. Persistent activity was found in areas including the supplementary motor area, caudate nucleus, anterior insula, frontal areas, and middle and posterior cingulate cortex, not overlapping with either listening, suppression, or omission activation. This suggests that the areas are perhaps specialized for working memory maintenance. We found no effect of metric complexity for either the normal presentation or omissions, but we found evidence for a small effect of omission position—at an uncorrected threshold—where omissions in the more metrical salient position, i.e., the first position in the bar, showed higher activation in anterior cingulate/medial superior frontal gyrus, compared to omissions in the less salient position, in line with the role of the anterior cingulate cortex for saliency detection. The results are consistent with findings in our previous studies on Parkinson’s disease, but are put into a bigger theoretical frameset.


2021 ◽  
Vol 376 (1835) ◽  
pp. 20200333 ◽  
Author(s):  
Dobromir Dotov ◽  
Laurel J. Trainor

Rhythms are important for understanding coordinated behaviours in ecological systems. The repetitive nature of rhythms affords prediction, planning of movements and coordination of processes within and between individuals. A major challenge is to understand complex forms of coordination when they differ from complete synchronization. By expressing phase as ratio of a cycle, we adapted levels of the Farey tree as a metric of complexity mapped to the range between in-phase and anti-phase synchronization. In a bimanual tapping task, this revealed an increase of variability with ratio complexity, a range of hidden and unstable yet measurable modes, and a rank-frequency scaling law across these modes. We use the phase-attractive circle map to propose an interpretation of these findings in terms of hierarchical cross-frequency coupling (CFC). We also consider the tendency for small-integer attractors in the single-hand repeated tapping of three-interval rhythms reported in the literature. The phase-attractive circle map has wider basins of attractions for such ratios. This work motivates the question whether CFC intrinsic to neural dynamics implements low-level priors for timing and coordination and thus becomes involved in phenomena as diverse as attractor states in bimanual coordination and the cross-cultural tendency for musical rhythms to have simple interval ratios. This article is part of the theme issue ‘Synchrony and rhythm interaction: from the brain to behavioural ecology’.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0252174
Author(s):  
Cecilie Møller ◽  
Jan Stupacher ◽  
Alexandre Celma-Miralles ◽  
Peter Vuust

In everyday life, we group and subdivide time to understand the sensory environment surrounding us. Organizing time in units, such as diurnal rhythms, phrases, and beat patterns, is fundamental to behavior, speech, and music. When listening to music, our perceptual system extracts and nests rhythmic regularities to create a hierarchical metrical structure that enables us to predict the timing of the next events. Foot tapping and head bobbing to musical rhythms are observable evidence of this process. In the special case of polyrhythms, at least two metrical structures compete to become the reference for these temporal regularities, rendering several possible beats with which we can synchronize our movements. While there is general agreement that tempo, pitch, and loudness influence beat perception in polyrhythms, we focused on the yet neglected influence of beat subdivisions, i.e., the least common denominator of a polyrhythm ratio. In three online experiments, 300 participants listened to a range of polyrhythms and tapped their index fingers in time with the perceived beat. The polyrhythms consisted of two simultaneously presented isochronous pulse trains with different ratios (2:3, 2:5, 3:4, 3:5, 4:5, 5:6) and different tempi. For ratios 2:3 and 3:4, we additionally manipulated the pitch of the pulse trains. Results showed a highly robust influence of subdivision grouping on beat perception. This was manifested as a propensity towards beats that are subdivided into two or four equally spaced units, as opposed to beats with three or more complex groupings of subdivisions. Additionally, lower pitched pulse trains were more often perceived as the beat. Our findings suggest that subdivisions, not beats, are the basic unit of beat perception, and that the principle underlying the binary grouping of subdivisions reflects a propensity towards simplicity. This preference for simple grouping is widely applicable to human perception and cognition of time.


2021 ◽  
Vol 66 (1) ◽  
pp. 217-226
Author(s):  
Joyanta Sarkar ◽  
Anil Rai

"Tone deafness refers to a condition where a person is unable to distinguish between different musical notes. Afflicted persons are not able to recognize the difference when 2 different musical notes are played. This inability is not caused by a lack of musical knowledge or training but is instead caused by genetic inheritance or brain damage. Tone deafness is a disability that is shown in music only. People who are tone deaf do not have a problem in recognizing the different intonations in human speech. This disability is also associated with the inability to follow musical rhythms and recognize songs. In this paper, we propose the ability of participants to recognize and repeat the musical notes that they hear. Testing was done using only the left ear, only the right ear, and both ears. Keywords: Music, Tone Deaf, Genetic Inheritance, Intonation. "


Sign in / Sign up

Export Citation Format

Share Document