chemosensory protein
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 28)

H-INDEX

23
(FIVE YEARS 3)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12132
Author(s):  
Yonghao Dong ◽  
Tong Li ◽  
Jin Liu ◽  
Meixue Sun ◽  
Xingyu Chen ◽  
...  

As potential molecular targets for developing novel pest management strategies, odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) have been considered to initiate odor recognition in insects. Herein, we investigated the OBPs and CSPs in a major global crop pest (Spodoptera exempta). Using transcriptome analysis, we identified 40 OBPs and 33 CSPs in S. exempta, among which 35 OBPs and 29 CSPs had intact open reading frames. Sequence alignment indicated that 30 OBPs and 23 CSPs completely contained the conserved cysteines. OBPs of lepidopteran insects usually belonged to classical, minus-C, and plus-C groups. However, phylogenetic analyses indicated that we only identified 28 classical and seven minus-C OBPs in S. exempta, suggesting that we might have missed some typical OBPs in lepidopteran insects, probably due to their low expression levels. All of the CSPs from S. exempta clustered with the orthologs of other moths. The identification and expression of the OBPs and CSPs were well studied in insect adults by transcriptional analyses, and herein we used samples at different stages to determine the expression of OBPs and CSPs in S. exempta. Interestingly, our data indicated that several OBPs and CSPs were especially or more highly expressed in larvae or pupae than other stages, including three exclusively (SexeOBP13, SexeOBP16 and SexeCSP23) and six more highly (SexeOBP15, SexeOBP37, SexeCSP4, SexeCSP8, SexeCSP19, and SexeCSP33) expressed in larvae, two exclusively (SexeCSP6 and SexeCSP20) and three more highly (SexeOBP18, SexeCSP17, and SexeCSP26) expressed in pupae. Usually, OBPs and CSPs had both male- and female-biased expression patterns in adult antennae. However, our whole-body data indicated that all highly expressed OBPs and CSPs in adults were male-biased or did not differ, suggesting diverse OBP and CSP functions in insect adults. Besides identifying OBPs and CSPs as well as their expression patterns, these results provide a molecular basis to facilitate functional studies of OBPs and CSPs for exploring novel management strategies to control S. exempta.


2021 ◽  
Vol 69 (37) ◽  
pp. 10797-10806
Author(s):  
Chunni Zhang ◽  
Bowen Tang ◽  
Taoling Zhou ◽  
Xiaoting Yu ◽  
Manfei Hu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Zehua Wang ◽  
Fan Yang ◽  
Ang Sun ◽  
Shuang Shan ◽  
Yongjun Zhang ◽  
...  

Chemosensory proteins (CSPs) have been identified in the sensory tissues of various insect species and are believed to be involved in chemical communication in insects. However, the physiological roles of CSPs in Halyomorpha halys, a highly invasive insect species, are rarely reported. Here, we focused on one of the antennal CSPs (HhalCSP15) and determined whether it was involved in olfactory perception. Reverse transcription PCR (RT-PCR) and quantitative real-time PCR (qRT-PCR) analysis showed that HhalCSP15 was enriched in nymph and male and female adult antennae, indicating its possible involvement in the chemosensory process. Fluorescence competitive binding assays revealed that three of 43 natural compounds showed binding abilities with HhalCSP15, including β-ionone (Ki=11.9±0.6μM), cis-3-hexen-1-yl benzoate (Ki=10.5±0.4μM), and methyl (2E,4E,6Z)-decatrienoate (EEZ-MDT; Ki=9.6±0.8μM). Docking analysis supported the experimental affinity for the three ligands. Additionally, the electrophysiological activities of the three ligands were further confirmed using electroantennography (EAG). EEZ-MDT is particularly interesting, as it serves as a kairomone when H. halys forages for host plants. We therefore conclude that HhalCSP15 might be involved in the detection of host-related volatiles. Our data provide a basis for further investigation of the physiological roles of CSPs in H. halys, and extend the olfactory function of CSPs in stink bugs.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 602
Author(s):  
Qian Jia ◽  
Hui Zeng ◽  
Jinbing Zhang ◽  
Shangfang Gao ◽  
Nan Xiao ◽  
...  

Spodoptera litura F. is a generalist herbivore and one of the most important economic pests feeding on about 300 host plants in many Asian countries. Specific insect behaviors can be stimulated after recognizing chemicals in the external environment through conserved chemosensory proteins (CSPs) in chemoreceptive organs, which are critical components of the olfactory systems. To explore its structural basis for ligand-recognizing capability, we solved the 2.3 Å crystal structure of the apoprotein of S. litura CSP8 (SlCSP8). The SlCSP8 protein displays a conserved spherical shape with a negatively charged surface. Our binding assays showed that SlCSP8 bound several candidate ligands with differential affinities, with rhodojaponin III being the most tightly bound ligand. Our crystallographic and biochemical studies provide important insight into the molecular recognition mechanism of the sensory protein SlCSP8 and the CSP family in general, and they suggest that CSP8 is critical for insects to identify rhodojaponin III, which may aid in the CSP-based rational drug design in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Wang ◽  
Xiaojian Wen ◽  
Yi Lu ◽  
Junbao Wen

The tree-of-heaven root weevil (Eucryptorrhynchus scrobiculatus) and the tree-of-heaven trunk weevil (Eucryptorrhynchus brandti) are closely related species that monophagously feed on the same host plant, the Ailanthus altissima (Mill) Swingle, at different locations. However, the mechanisms of how they select different parts of the host tree are unclear. As chemosensory systems play important roles in host location and oviposition, we screened candidate chemosensory protein genes from the transcriptomes of the two weevils at different developmental stages. In this study, we identified 12 candidate chemosensory proteins (CSPs) of E. scrobiculatus and E. brandti, three EscrCSPs, and one EbraCSPs, respectively, were newly identified. The qRT-PCR results showed that EscrCSP7/8a/9 and EbraCSP7/8/9 were significantly expressed in adult antennae, while EscrCSP8a and EbraCSP8 shared low sequence identity, suggesting that they may respond to different odorant molecule binding. Additionally, EbraCSP6 and EscrCSP6 were mainly expressed in antennae and proboscises and likely participate in the process of chemoreception. The binding simulation of nine volatile compounds of the host plant to EscrCSP8a and EbraCSP8 indicated that (1R)-(+)-alpha-pinene, (–)-beta-caryophyllene, and beta-elemen have higher binding affinities with EscrCSP8a and lower affinities with EbraCSP8. In addition, there were seven, two, and one EbraCSPs mainly expressed in pupae, larvae, and eggs, respectively, indicating possible developmental-related roles in E. brandti. We screened out several olfactory-related possible CSP genes in E. brandti and E. scrobiculatus and simulated the binding model of CSPs with different compounds, providing a basis for explaining the niche differentiation of the two weevils.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 335
Author(s):  
Fen Li ◽  
Herbert Venthur ◽  
Shang Wang ◽  
Rafael A. Homem ◽  
Jing-Jiang Zhou

It has been speculated that insect chemosensory proteins (CSPs) may have additional roles beyond olfaction. In this study, the phylogenetic and genomic analyses of the CSPs of the cotton aphid, Aphis gossypii, revealed the presence of gene gain-and-loss among different aphid field populations. Differential expressions of eight CSP genes were demonstrated after treatments with insecticides of different modes of action. The expression of AgosCSP5 was significantly upregulated by the insecticide treatments in a dose-dependent manner. The Drosophila flies overexpressing AgosCSP5 were significantly less susceptible to the insecticides, omethoate, imidacloprid and cypermethrin but not to deltamethrin and tau-fluvalinate, compared with control flies. The transgenic Drosophila flies exhibited an LC50 resistance ratio of 2.6 to omethoate, compared with control flies. Likewise, the mortality of the transgenic flies to imidacloprid and cypermethrin was significantly lower than that of the control flies (p < 0.01). Homology modelling, molecular docking and dynamic simulation supported the interactions and revealed a higher stability of AgosCSP5/insecticide complexes than AgosCSP5/semiochemical complexes. Our study demonstrates for first time the in vivo evidence for the involvement of CSP genes in insecticide resistance of crop insect pests and provides new insights of the newly discovered CSP-mediated insect resistance mechanism to insecticides.


Author(s):  
Zhao‐Xiang Wang ◽  
Zhen‐hua Qi ◽  
Jian Chen ◽  
Fu‐Lian Wang ◽  
Lian‐You Gui ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 280
Author(s):  
Annick Barre ◽  
Carole Pichereaux ◽  
Mathias Simplicien ◽  
Odile Burlet-Schiltz ◽  
Hervé Benoist ◽  
...  

The increasing development of edible insect flours as alternative sources of proteins added to food and feed products for improving their nutritional value, necessitates an accurate evaluation of their possible adverse side-effects, especially for individuals suffering from food allergies. Using a proteomic- and bioinformatic-based approach, the diversity of proteins occurring in currently consumed edible insects such as silkworm (Bombyx mori), cricket (Acheta domesticus), African migratory locust (Locusta migratoria), yellow mealworm (Tenebrio molitor), red palm weevil (Rhynchophorus ferrugineus), and giant milworm beetle (Zophobas atratus), was investigated. Most of them consist of phylogenetically-related protein allergens widely distributed in the different groups of arthropods (mites, insects, crustaceans) and mollusks. However, a few proteins belonging to discrete protein families including the chemosensory protein, hexamerin, and the odorant-binding protein, emerged as proteins highly specific for edible insects. To a lesser extent, other proteins such as apolipophorin III, the larval cuticle protein, and the receptor for activated protein kinase, also exhibited a rather good specificity for edible insects. These proteins, that are apparently missing or much less represented in other groups of arthropods, mollusks and nematods, share well conserved amino acid sequences and very similar three-dimensional structures. Owing to their ability to trigger allergic responses in sensitized people, they should be used as probes for the specific detection of insect proteins as food ingredients in various food products and thus, to assess their food safety, especially for people allergic to edible insects.


Insects ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Xingcong Jiang ◽  
Haozhi Xu ◽  
Nan Zheng ◽  
Xuewei Yin ◽  
Long Zhang

Chemosensory system is vitally important for animals to select food. Antifeedants that herbivores encounter can interfere with feeding behavior and exert physiological effects. Few studies have assessed the molecular mechanisms underlying the chemoreception of antifeedants. In this study, we demonstrated that a chemosensory protein (CSP) in Locusta migratoria is involved in detecting an antifeedant. This CSP, LmigEST6 (GenBank Acc. No. AJ973420), we named as LmigCSPIII, expressed in sensory organs where chemosensilla are widely distributed. Fluorescent binding experiments indicated that LmigCSPIII exhibits high binding affinity to α-amylcinnamaldehyde (AMCAL), a natural compound from non-host plant. This compound was subsequently demonstrated to be an effective antifeedant to locusts in feeding bioassay. By injection of double-stranded RNA (dsRNA) of LmigCSPIII, we generated LmigCSPIII knockdown locusts. The feeding behaviour assays demonstrated that the LmigCSPIII knockdown locusts had reduced sensitivity to the antifeedant but showed no changes in their physiological development or food consumption. Therefore, we inferred that this chemosensory protein is involved in antifeedant detection.


Sign in / Sign up

Export Citation Format

Share Document