packet losses
Recently Published Documents


TOTAL DOCUMENTS

531
(FIVE YEARS 139)

H-INDEX

37
(FIVE YEARS 5)

Author(s):  
Volodymyr Kharchenko ◽  
Andrii Grekhov ◽  
Vasyl Kondratiuk

The purpose of this article is to simulate data transmission and calculate traffic parameters in SAGIN air segment for which Ad Hoc network of flying drones is considered as a model. Traffic modeling is based on the manet-routing-compare example from the ns3 simulator library, which has been supplemented with the code for calculation packet losses, throughput/goodput, and message transmission delays. The program allowed considering drones movement at both low and high speeds from 3.6 km/h to 72 km/h. The dependences of traffic losses on data transmission power, transaction sizes and data transmission rate are obtained and analyzed. The distribution of the average effective arrival rate λ and the throughput/goodput for drones has been studied. Comparing traffic characteristics in models with different numbers of drones allows judging how the required quality of service can be achieved by choosing the right transmission parameters.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
J. Aznar-Poveda ◽  
A.-J. García-Sánchez ◽  
E. Egea-López ◽  
J. García-Haro

AbstractIn vehicular communications, the increase of the channel load caused by excessive periodical messages (beacons) is an important aspect which must be controlled to ensure the appropriate operation of safety applications and driver-assistance systems. To date, the majority of congestion control solutions involve including additional information in the payload of the messages transmitted, which may jeopardize the appropriate operation of these control solutions when channel conditions are unfavorable, provoking packet losses. This study exploits the advantages of non-cooperative, distributed beaconing allocation, in which vehicles operate independently without requiring any costly road infrastructure. In particular, we formulate the beaconing rate control problem as a Markov Decision Process and solve it using approximate reinforcement learning to carry out optimal actions. Results obtained were compared with other traditional solutions, revealing that our approach, called SSFA, is able to keep a certain fraction of the channel capacity available, which guarantees the delivery of emergency-related notifications with faster convergence than other proposals. Moreover, good performance was obtained in terms of packet delivery and collision ratios.


Author(s):  
Hassan Iqbal ◽  
Ayesha Khalid ◽  
Muhammad Shahzad

Cloud gaming platforms have witnessed tremendous growth over the past two years with a number of large Internet companies including Amazon, Facebook, Google, Microsoft, and Nvidia publicly launching their own platforms. While cloud gaming platforms continue to grow, the visibility in their performance and relative comparison is lacking. This is largely due to absence of systematic measurement methodologies which can generally be applied. As such, in this paper, we implement DECAF, a methodology to systematically analyze and dissect the performance of cloud gaming platforms across different game genres and game platforms. DECAF is highly automated and requires minimum manual intervention. By applying DECAF, we measure the performance of three commercial cloud gaming platforms including Google Stadia, Amazon Luna, and Nvidia GeForceNow, and uncover a number of important findings. First, we find that processing delays in the cloud comprise majority of the total round trip delay experienced by users, accounting for as much as 73.54% of total user-perceived delay. Second, we find that video streams delivered by cloud gaming platforms are characterized by high variability of bitrate, frame rate, and resolution. Platforms struggle to consistently serve 1080p/60 frames per second streams across different game genres even when the available bandwidth is 8-20× that of platform's recommended settings. Finally, we show that game platforms exhibit performance cliffs by reacting poorly to packet losses, in some cases dramatically reducing the delivered bitrate by up to 6.6× when loss rates increase from 0.1% to 1%. Our work has important implications for cloud gaming platforms and opens the door for further research on comprehensive measurement methodologies for cloud gaming.


2021 ◽  
Author(s):  
Svitlana Ilnytska ◽  
Fengping Li ◽  
Andrii Grekhov ◽  
Vasyl Kondratiuk ◽  
Jin Chao

Abstract Intelligence of Remotely Piloted Air System (RPAS) swarms depends on reliable communications. The parallelism and distributed characteristics of swarm intelligence provide self-adapting and reliable capabilities. This article is devoted to the calculation of packet losses and the impact of traffic parameters on the data exchange with swarms. Original swarm models were created with the help of MATLAB and NetCracker packages. Dependences of data packet losses on the transaction size are calculated for different RPAS number in a swarm using NetCracker software. Data traffic with different parameters and statistical distribution laws was considered. The effect of different distances to drones on the base station workload has been simulated. Data transmission in a swarm was studied using MATLAB software depending on the signal-to-noise ratio, nonlinearity levels of base station amplifier, signal modulation types, base station antenna diameters, and signal phase offsets. The data obtained allows foresee the operation of RPAS communication channels in swarms.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2149
Author(s):  
Haoliang Lan ◽  
Jie Xu ◽  
Qun Wang ◽  
Wei Ding

This paper is devoted to further strengthening, in the current asymmetric information environment, the informed level of operators about network performance. Specifically, in view of the burst and perishability of a packet loss event, to better meet the real-time requirements of current high-speed backbone performance monitoring, a model for Packet Loss Measurement at the access network boundary Based on Sampled Flow (PLMBSF) is presented in this paper under the premise of both cost and real-time. The model overcomes problems such as the inability of previous estimation to distinguish between packet losses before and after the monitoring point, deployment difficulties and cooperative operation consistency. Drawing support from the Mathis equation and regression analysis, the measurement for packet losses before and after the monitoring point can be realized when using only the sampled flows generated by the access network boundary equipment. The comparison results with the trace-based passive packet loss measurement show that although the proposed model is easily affected by factors such as flow length, loss rate, sampling rate, the overall accuracy is still within the acceptable range. In addition, the proposed model PLMBSF, compared with the trace-based loss measurement is only different in the input data granularity. Therefore, PLMBSF and its advantages are also applicable to aggregated traffic.


2021 ◽  
Author(s):  
Evan M. Dastin-van Rijn ◽  
Nicole R. Provenza ◽  
Matthew T. Harrison ◽  
David A. Borton
Keyword(s):  

2021 ◽  
Vol 2096 (1) ◽  
pp. 012030
Author(s):  
M Zverev ◽  
V Vostrikova ◽  
D Teselkin

Abstract The work considers the task of information processing in a subsystem of the hardware-software platform of the simulator complex - a mobile system of simulating isolation breathing apparatuses. The problem of predicting values when data packets are lost during their wireless transmission has been revealed. To solve the problem, an algorithm for data processing based on neural network technology has been developed, which allows reducing the number of data packet losses by predicting the lost values. The experimental studies confirmed the adequacy and effectiveness of the proposed algorithm. The use of neural networks in solving the problems of information processing has improved the accuracy of this process.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Jirapon Sa-Ingthong ◽  
Anan Phonphoem ◽  
Aphirak Jansang ◽  
Chaiporn Jaikaeo

Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 263
Author(s):  
Meiliu Li ◽  
Jinhua She ◽  
Zhen-Tao Liu ◽  
Min Wu ◽  
Yasuhiro Ohyama

In a networked control system (NCS), time delays, uncertainties, packet losses, and exogenous disturbances seriously affect the control performance. To solve these problems, a modified disturbance suppression configuration of NCS was built. In the configuration, a proportional–integral observer (PIO) reproduces the state of a plant and reduces the observation error; an equivalent input disturbance (EID) estimator estimates and compensates for the disturbance in the control input channel. The stability conditions of the NCS are given by using a linear matrix inequality, and the gains of the PIO and state feedback controller are obtained. Numerical simulation results and an application of a magnetic levitation ball system verifies the effectiveness of the presented method. Comparison with the conventional PIO and EID methods shows that the presented method reduced the tracking error to about one-fifth and two-thirds of their original values, respectively. This demonstrates the validity and superiority of the presented method.


Sign in / Sign up

Export Citation Format

Share Document