soliton dynamics
Recently Published Documents


TOTAL DOCUMENTS

451
(FIVE YEARS 80)

H-INDEX

39
(FIVE YEARS 3)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Masashi Hamanaka ◽  
Shan-Chi Huang

Abstract We study dynamics of multi-soliton solutions of anti-self-dual Yang-Mills equations for G = GL(2, ℂ) in four-dimensional spaces. The one-soliton solution can be interpreted as a codimension-one soliton in four-dimensional spaces because the principal peak of action density localizes on a three-dimensional hyperplane. We call it the soliton wall. We prove that in the asymptotic region, the n-soliton solution possesses n isolated localized lumps of action density, and interpret it as n intersecting soliton walls. More precisely, each action density lump is essentially the same as a soliton wall because it preserves its shape and “velocity” except for a position shift of principal peak in the scattering process. The position shift results from the nonlinear interactions of the multi-solitons and is called the phase shift. We calculate the phase shift factors explicitly and find that the action densities can be real-valued in three kind of signatures. Finally, we show that the gauge group can be G = SU(2) in the Ultrahyperbolic space 𝕌 (the split signature (+, +, −, −)). This implies that the intersecting soliton walls could be realized in all region in N=2 string theories. It is remarkable that quasideterminants dramatically simplify the calculations and proofs.


2021 ◽  
Author(s):  
Yan Zhou ◽  
Keyun Zhang ◽  
Chun Luo ◽  
Xiaoyan Lin ◽  
Meisong Liao ◽  
...  

Abstract Theoretical simulations about manipulating vector solitons with super-sech pulse shapes are conducted based on an optical fiber system in this manuscript. By changing temporal pulses’ parameters when orthogonally polarized pulses have the same or different input central wavelengths, output modes in orthogonal directions will demonstrate different properties. When input orthogonal modes have the same central wavelength, “2+2” pseudo-high-order vector soliton can be generated when time delay is changed. While under the condition of different central wavelengths, orthogonal pulses with multiple peaks accompanied with two wavelengths can be achieved through varying projection angle, time delay or phase difference. Our simulations are helpful to the study of optical soliton dynamics in optical fiber system.


Author(s):  
Kang-Jia Wang ◽  
Hong-Wei Zhu

Abstract The Kundu-Mukherjee-Naskar equation can be used to address certain optical soliton dynamics in the (2+1) dimensions. In this paper, we aim to find its periodic wave solution by the Hamiltonian-based algorithm. Compared with the existing results, they have a good agreement, which strongly proves the correctness of the proposed method. Finally, the numerical results are presented in the form of 3-D and 2-D plots. The results in this work are expected to shed a bright light on the study of the periodic wave solution in physics.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Benhai Wang ◽  
Haobin Han ◽  
Lijun Yu ◽  
Yueyue Wang ◽  
Chaoqing Dai

Abstract Recently, in addition to exploring the application of new saturable absorber devices in fiber lasers, soliton dynamics has also become a focus of current research. In this article, we report an ultrashort pulse fiber laser based on VSe2/GO nanocomposite and verify the formation process of soliton and soliton molecules by the numerical simulation. The prepared VSe2/GO-based device shows excellent saturable absorption characteristics with a modulation depth of 14.3% and a saturation absorption intensity of 0.93 MW/cm2. The conventional soliton is obtained with pulse width of 573 fs, which is currently the narrowest pulse width based on VSe2-related material, and has a signal-to-noise ratio of 60.4 dB. In addition, the soliton molecules are realized based on the VSe2/GO for the first time and have a pulse interval of ∼2.2 ps. We study the soliton dynamics through numerical simulation and reveal that before the formation of the soliton, it undergoes multiple nonlinear stages, such as soliton mode-locking, soliton splitting, and soliton oscillation. Furthermore, the results of numerical simulation are agreed well with the experimental data. These results indicate that the VSe2/GO might be another promising saturable absorber material for ultrafast photonics, and deepen the understanding of soliton dynamics in ultrafast fiber lasers.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Jim Skulte ◽  
Lukas Broers ◽  
Jayson G. Cosme ◽  
Ludwig Mathey
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fanchao Meng ◽  
Coraline Lapre ◽  
Cyril Billet ◽  
Thibaut Sylvestre ◽  
Jean-Marc Merolla ◽  
...  

AbstractUnderstanding dynamical complexity is one of the most important challenges in science. Significant progress has recently been made in optics through the study of dissipative soliton laser systems, where dynamics are governed by a complex balance between nonlinearity, dispersion, and energy exchange. A particularly complex regime of such systems is associated with noise-like pulse multiscale instabilities, where sub-picosecond pulses with random characteristics evolve chaotically underneath a much longer envelope. However, although observed for decades in experiments, the physics of this regime remains poorly understood, especially for highly-nonlinear cavities generating broadband spectra. Here, we address this question directly with a combined numerical and experimental study that reveals the physical origin of instability as nonlinear soliton dynamics and supercontinuum turbulence. Real-time characterisation reveals intracavity extreme events satisfying statistical rogue wave criteria, and both real-time and time-averaged measurements are in quantitative agreement with modelling.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
C. Adam ◽  
K. Oles ◽  
T. Romanczukiewicz ◽  
A. Wereszczynski ◽  
W. J. Zakrzewski

Abstract We show that spectral walls are common phenomena in the dynamics of kinks in (1+1) dimensions. They occur in models based on two or more scalar fields with a nonempty Bogomol’nyi-Prasad-Sommerfield (BPS) sector, hosting two zero modes, where they are one of the main factors governing the soliton dynamics. We also show that spectral walls appear as singularities of the dynamical vibrational moduli space.


2021 ◽  
Vol 2 (8) ◽  
pp. 2170024
Author(s):  
Ezgi Sahin ◽  
Andrea Blanco-Redondo ◽  
Byoung-Uk Sohn ◽  
Yanmei Cao ◽  
George F. R. Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document