binding determinants
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 10)

H-INDEX

36
(FIVE YEARS 1)

2021 ◽  
Vol 17 (9) ◽  
pp. e1009380
Author(s):  
Rui Yin ◽  
Johnathan D. Guest ◽  
Ghazaleh Taherzadeh ◽  
Ragul Gowthaman ◽  
Ipsa Mittra ◽  
...  

The SARS-CoV-2 pandemic highlights the need for a detailed molecular understanding of protective antibody responses. This is underscored by the emergence and spread of SARS-CoV-2 variants, including Alpha (B.1.1.7) and Delta (B.1.617.2), some of which appear to be less effectively targeted by current monoclonal antibodies and vaccines. Here we report a high resolution and comprehensive map of antibody recognition of the SARS-CoV-2 spike receptor binding domain (RBD), which is the target of most neutralizing antibodies, using computational structural analysis. With a dataset of nonredundant experimentally determined antibody-RBD structures, we classified antibodies by RBD residue binding determinants using unsupervised clustering. We also identified the energetic and conservation features of epitope residues and assessed the capacity of viral variant mutations to disrupt antibody recognition, revealing sets of antibodies predicted to effectively target recently described viral variants. This detailed structure-based reference of antibody RBD recognition signatures can inform therapeutic and vaccine design strategies.


2021 ◽  
Author(s):  
Roxie C. Girardin ◽  
Janice Pata ◽  
Xiaohong Qin ◽  
Haixin Sui ◽  
Kathleen A. McDonough

ABSTRACTThe bacterium Mycobacterium tuberculosis (Mtb) must adapt to myriad host-associated stressors. A recently identified transcription factor, AbmR (ATP-binding mcr11-regulator), regulates expression of an essential stress-responsive small RNA (Mcr11) and inhibits the growth of Mtb. Previously, AbmR was found to make 39S complexes of unknown function. Here we report that AbmR 39S complexes are comprised of AbmR and co-purifying RNAs and that RNA-binding inhibits AbmR’s DNA-binding function. While AbmR binds DNA and regulates gene expression in a sequence specific manner, RNA-binding is not sequence specific. Amino acid R146 is important for DNA-binding but completely dispensable for RNA-binding and 39S complex formation, establishing that the RNA- and DNA-binding functions of AbmR are distinct. RNA bound by AbmR was protected from RNase digestion, supporting an RNA modulatory function for the 39S complex. We also found that abmR is required for optimal survival during treatment with the ATP-depleting antibiotic bedaquiline, which is associated with extended RNA stability. These data establish a paradigm wherein a transcription factor assembles into large complexes to transition between mutually exclusive DNA-binding gene regulatory and RNA-binding RNA modulatory functions. Our findings indicate that AbmR is a dual-function protein that may have novel RNA regulatory roles in stress adapted Mtb.


2021 ◽  
Author(s):  
Debajit Dey ◽  
Suruchi Singh ◽  
Saif Khan ◽  
Matthew Martin ◽  
Nicholas Schnicker ◽  
...  

β-Coronaviruses such as SARS-CoV-2 hijack coatomer protein-I (COPI) for spike protein retrograde trafficking to the progeny assembly site in endoplasmic reticulum-Golgi intermediate compartment (ERGIC). However, limited residue-level details are available into how the spike interacts with COPI. Here we identify a novel extended COPI binding motif in the spike that encompasses the canonical K-x-H dibasic sequence. This motif demonstrates selectivity for αCOPI subunit. Guided by an in silico analysis of dibasic motifs in the human proteome, we employ mutagenesis and binding assays to show that the spike motif terminal residues are critical modulators of complex dissociation, which is essential for spike release in ERGIC. αCOPI residues critical for spike motif binding are elucidated by mutagenesis and crystallography and found to be conserved in the zoonotic reservoirs, bats, pangolins, camels, and in humans. Collectively, our investigation on the spike motif identifies key COPI binding determinants with implications for retrograde trafficking.


2021 ◽  
Author(s):  
Mateusz P. Czub ◽  
Ivan G. Shabalin ◽  
Wladek Minor

SummaryKetoprofen is a popular non-steroidal anti-inflammatory drug (NSAID) transported in the bloodstream mainly by serum albumin (SA). Ketoprofen is known to have multiple side effects and interactions with hundreds of other drugs, which might be related to its vascular transport by SA. Our work reveals that ketoprofen binds to a different subset of drug binding sites on human SA than has been observed for other species, despite the conservation of drug sites between species. We discuss potential reasons for the observed differences in the drug’s preferences for particular sites, including ketoprofen binding determinants in mammalian SAs and the effect of fatty acids on drug binding. The presented results show that the SA drug sites to which a particular drug binds cannot be easily predicted based only on a complex of SA from another species and the conservation of drug sites between species.


2021 ◽  
Author(s):  
Rui Yin ◽  
Johnathan D Guest ◽  
Ghazaleh Taherzadeh ◽  
Ragul Gowthaman ◽  
Ipsa Mittra ◽  
...  

The SARS-CoV-2 pandemic highlights the need for a detailed molecular understanding of protective antibody responses. This is underscored by the emergence and spread of SARS-CoV-2 variants, including B.1.1.7, P1, and B.1.351, some of which appear to be less effectively targeted by current monoclonal antibodies and vaccines. Here we report a high resolution and comprehensive map of antibody recognition of the SARS-CoV-2 spike receptor binding domain (RBD), which is the target of most neutralizing antibodies, using computational structural analysis. With a dataset of nonredundant experimentally determined antibody-RBD structures, we classified antibodies by RBD residue binding determinants using unsupervised clustering. We also identified the energetic and conservation features of epitope residues and assessed the capacity of viral variant mutations to disrupt antibody recognition, revealing sets of antibodies predicted to effectively target recently described viral variants. This detailed structure-based reference of antibody RBD recognition signatures can inform therapeutic and vaccine design strategies.


2021 ◽  
Vol 22 (3) ◽  
pp. 1087
Author(s):  
Tatyana Mamonova ◽  
Peter A. Friedman

Na+/H+ exchange factor-1 (NHERF1), a multidomain PDZ scaffolding phosphoprotein, is required for the type II sodium-dependent phosphate cotransporter (NPT2A)-mediated renal phosphate absorption. Both PDZ1 and PDZ2 domains are involved in NPT2A-dependent phosphate uptake. Though harboring identical core-binding motifs, PDZ1 and PDZ2 play entirely different roles in hormone-regulated phosphate transport. PDZ1 is required for the interaction with the C-terminal PDZ-binding sequence of NPT2A (-TRL). Remarkably, phosphocycling at Ser290 distant from PDZ1, the penultimate step for both parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) regulation, controls the association between NHERF1 and NPT2A. PDZ2 interacts with the C-terminal PDZ-recognition motif (-TRL) of G Protein-coupled Receptor Kinase 6A (GRK6A), and that promotes phosphorylation of Ser290. The compelling biological puzzle is how PDZ1 and PDZ2 with identical GYGF core-binding motifs specifically recognize distinct binding partners. Binding determinants distinct from the canonical PDZ-ligand interactions and located “outside the box” explain PDZ domain specificity. Phosphorylation of NHERF1 by diverse kinases and associated conformational changes in NHERF1 add more complexity to PDZ-binding diversity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rodrigo Barbosa de Aguiar ◽  
Tábata de Almeida da Silva ◽  
Bruno Andrade Costa ◽  
Marcelo Ferreira Marcondes Machado ◽  
Renata Yoshiko Yamada ◽  
...  

AbstractSingle-chain variable fragments (scFvs) are small-sized artificial constructs composed of the immunoglobulin heavy and light chain variable regions connected by a peptide linker. We have previously described an anti-fibroblast growth factor 2 (FGF2) immunoglobulin G (IgG) monoclonal antibody (mAb), named 3F12E7, with notable antitumor potential revealed by preclinical assays. FGF2 is a known angiogenesis-associated molecule implicated in tumor progression. In this report, we describe a recombinant scFv format for the 3F12E7 mAb. The results demonstrate that the generated 3F12E7 scFv, although prone to aggregation, comprises an active anti-FGF2 product that contains monomers and small oligomers. Functionally, the 3F12E7 scFv preparations specifically recognize FGF2 and inhibit tumor growth similar to the corresponding full-length IgG counterpart in an experimental model. In silico molecular analysis provided insights into the aggregation propensity and the antigen-recognition by scFv units. Antigen-binding determinants were predicted outside the most aggregation-prone hotspots. Overall, our experimental and prediction dataset describes an scFv scaffold for the 3F12E7 mAb and also provides insights to further engineer non-aggregated anti-FGF2 scFv-based tools for therapeutic and research purposes.


Biochemistry ◽  
2020 ◽  
Vol 59 (35) ◽  
pp. 3247-3257 ◽  
Author(s):  
Christine M. Harvey ◽  
Katherine H. O’Toole ◽  
Chunliang Liu ◽  
Patrick Mariano ◽  
Debra Dunaway-Mariano ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 447 ◽  
Author(s):  
Susan M. Watanabe ◽  
Madeleine Strickland ◽  
Nico Tjandra ◽  
Carol A. Carter

The ESCRT-I factor Tsg101 is essential for sorting endocytic cargo and is exploited by viral pathogens to facilitate egress from cells. Both the nucleocapsid (NC) domain and p6 domain in HIV-1 Gag contribute to recruitment of the protein. However, the role of NC is unclear when the P(S/T)AP motif in p6 is intact, as the motif recruits Tsg101 directly. The zinc fingers in NC bind RNA and membrane and are critical for budding. Tsg101 can substitute for the distal ZnF (ZnF2) and rescue budding of a mutant made defective by deletion of this element. Here, we report that the ubiquitin (Ub) E2 variant (UEV) domain in Tsg101 binds tRNA in vitro. We confirmed that Tsg101 can substitute for ZnF2 when provided at the viral assembly site as a chimeric Gag-Tsg101 protein (Gag-ΔZnF2-Tsg101) and rescue budding. The UEV was not required in this context; however, mutation of the RNA binding determinants in UEV prevented Tsg101 recruitment from the cell interior when Gag and Tsg101 were co-expressed. The same Tsg101 mutations increased recognition of Gag-Ub, suggesting that tRNA and Ub compete for binding sites. This study identifies a novel Tsg101 binding partner that may contribute to its function in recognition of Ub-modified cargo.


2019 ◽  
Vol 64 (4) ◽  
pp. 602-607 ◽  
Author(s):  
Yu. K. Agapova ◽  
A. A. Talyzina ◽  
D. A. Altukhov ◽  
A. L. Lavrentiev ◽  
V. I. Timofeev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document