doped polymer
Recently Published Documents


TOTAL DOCUMENTS

1015
(FIVE YEARS 125)

H-INDEX

49
(FIVE YEARS 8)

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Abdul Latif Ahmad ◽  
Oluwasola Idowu Ebenezer ◽  
Noor Fazliani Shoparwe ◽  
Suzylawati Ismail

The application of polymer inclusion membranes (PIMs) for the aquatic remediation of several heavy metals, dyes, and nutrients has been extensively studied. However, its application in treating organic compounds such as Ibuprofen, an emerging pharmaceutical contaminant that poses potential environmental problems, has not been explored satisfactorily. Therefore, graphene oxide (GO) doped PIMs were fabricated, characterized, and applied to extract aqueous Ibuprofen at varied pH conditions. The doped PIMs were synthesized using a low concentration of Aliquat 336 as carrier and 0, 0.15, 0.45, and 0.75% GO as nanoparticles in polyvinyl chloride (PVC) base polymer without adding any plasticizer. The synthesized PIM was characterized by SEM, FTIR, physical, and chemical stability. The GO doped PIM was well plasticized and had an optimal Ibuprofen extraction efficiency of about 84% at pH of 10 and 0.75% GO concentration. Furthermore, the GO doped PIM’s chemical stability indicates better stability in acidic solution than in the alkaline solution. This study demonstrates that the graphene oxide-doped PIM significantly enhanced the extraction of Ibuprofen at a low concentration. However, further research is required to improve its stability and efficiency for the remediation of the ubiquitous Ibuprofen in the aquatic environment.


2021 ◽  
pp. 110067
Author(s):  
Karla A. Bastidas-Bonilla ◽  
Pedro L.M. Podesta-Lerma ◽  
Hector R. Vega-Carrillo ◽  
Ramón Castañeda-Priego ◽  
Erick Sarmiento-Gómez ◽  
...  

2021 ◽  
Author(s):  
Harsh Patel ◽  
NAVEEN KUMAR ACHARYA

Abstract Nanocomposite membranes are a class of innovative filtering materials made up of nanofillers embedded in a polymeric or inorganic oxide matrix that functionalized for the membrane. Thermally rearranged (TR) polymers are found to have a good blending of selectivity and permeability. Chemical iridization is a process for used to make HAB-6FDA polyimide from 3,3 dihydroxy-4,4 diamino-biphenyl (HAB) & 2,2-bis-(3,4-dicarboxyphenyl) hexafluoro propane dianhydride (6FDA). The sample is first changed from a pure polymer membrane to a silica nanofiller doped polymer layer and explain thermally rearrangement for gas permeability in polymer nanocomposite layers and its relationship with kinetic diameter of different gases. The selectivity is decreases as the permeability increases that shows on a trade-off relationship between permeability & selectivity. The CO2 permeability of the HAB-6FDA TR polymers is greater than that of other classes of polymers by equal free volume and indicating that these TR polymers have free volume distribution that supports high permeability. Thermally rearranged polymer nanocomposite exhibits higher gas permeability than that of silica doped and pure polymer. The selectivity for H2/N2 and H2/CO2 gas pairs exceeds towards Robeson's upper bound limit and in case of H2/CH4 gas pair this limit were crossed the Robeson’s upper bond limit. UV spectroscopy shows the change in transmission at higher wavelengths, while XRD show the reduction in FWHM with thermal treatment temperature. Polymer nanocomposite can be utilized to obtain high purity hydrogen gas for refinery and petrochemical applications.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sangeeta Rout ◽  
Vanessa N. Peters ◽  
Sangram K. Pradhan ◽  
Carl E. Bonner ◽  
Mikhail A. Noginov

Abstract We have grown arrays of silver nanowires in pores of anodic alumina membranes (metamaterials with hyperbolic dispersion at λ ≥ 615 nm), spin coated them with the dye-doped polymer (HITC:PMMA), and studied the rates of radiative and nonradiative relaxation as well as the concentration quenching (Förster energy transfer to acceptors). The results were compared to those obtained on top of planar Ag films and glass (control samples). The strong spatial inhomogeneity of emission kinetics recorded in different spots across the sample and strong inhibition of the concentration quenching in arrays of Ag nanowires are among the most significant findings of this study.


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 791
Author(s):  
KM Manikandan ◽  
Arunagiri Yelilarasi ◽  
SS Saravanakumar ◽  
Raed H. Althomali ◽  
Anish Khan ◽  
...  

In this work, the quasi-solid-state polymer electrolyte containing poly(vinyl alcohol)-polypyrrole as a polymer host, potassium iodide (KI), iodine (I2), and different plasticizers (EC, PC, GBL, and DBP) was successfully prepared via the solution casting technique. Fourier transform infrared spectroscopy (FTIR) was used to analyze the interaction between the polymer and the plasticizer. X-ray diffraction confirmed the reduction of crystallinity in the polymer electrolyte by plasticizer doping. The ethylene carbonate-based polymer electrolyte showed maximum electrical conductivity of 0.496 S cm−1. The lowest activation energy of 0.863 kJ mol−1 was obtained for the EC-doped polymer electrolyte. The lowest charge transfer resistance Rct1 was due to a faster charge transfer at the counter electrode/electrolyte interface. The polymer electrolyte containing the EC plasticizer exhibited an average roughness of 23.918 nm. A photo-conversion efficiency of 4.19% was recorded in the DSSC with the EC-doped polymer electrolyte under the illumination of 100 mWcm−2.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6089
Author(s):  
Tatevik M. Sarukhanyan ◽  
Hermine Gharagulyan ◽  
Mushegh S. Rafayelyan ◽  
Sergey S. Golik ◽  
Ashot H. Gevorgyan ◽  
...  

Cholesteric liquid crystals (CLCs) with induced defects are one of the most prominent materials to realize compact, low-threshold and tunable coherent light sources. In this context, the investigation of optical properties of induced defect modes in such CLCs is of great interest. In particular, many studies have been devoted to the spectral control of the defect modes depending on their thickness, optical properties, distribution along the CLC, etc. In this paper, we investigate the lasing possibilities of a dye-doped polymer layer embedded in a wedge-shaped CLC. We show that multimode laser generation is possible due to the observed multiple defect modes in the PBG that enlarges the application range of the system. Furthermore, our simulations based on a Berreman 4 × 4 matrix approach for a wide range of CLC thickness show both periodic and continuous generation of defect modes along particular spectral lines inside the PBG. Such a robust spectral behaviour of induced defect modes is unique, and, to our knowledge, is not observed in similar CLC-based structures.


2021 ◽  
Vol 71 (9) ◽  
pp. 794-800
Author(s):  
Yang Wu ◽  
Hyo Jin Seo ◽  
Sun Il Kim* ◽  
Dong Soo Choi

Sign in / Sign up

Export Citation Format

Share Document