rayleigh benard convection
Recently Published Documents


TOTAL DOCUMENTS

1514
(FIVE YEARS 286)

H-INDEX

70
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Lia Siegelman ◽  
Patrice Klein ◽  
Andrew P. Ingersoll ◽  
Shawn P. Ewald ◽  
William R. Young ◽  
...  

AbstractJupiter’s atmosphere is one of the most turbulent places in the solar system. Whereas observations of lightning and thunderstorms point to moist convection as a small-scale energy source for Jupiter’s large-scale vortices and zonal jets, this has never been demonstrated due to the coarse resolution of pre-Juno measurements. The Juno spacecraft discovered that Jovian high latitudes host a cluster of large cyclones with diameter of around 5,000 km, each associated with intermediate- (roughly between 500 and 1,600 km) and smaller-scale vortices and filaments of around 100 km. Here, we analyse infrared images from Juno with a high resolution of 10 km. We unveil a dynamical regime associated with a significant energy source of convective origin that peaks at 100 km scales and in which energy gets subsequently transferred upscale to the large circumpolar and polar cyclones. Although this energy route has never been observed on another planet, it is surprisingly consistent with idealized studies of rapidly rotating Rayleigh–Bénard convection, lending theoretical support to our analyses. This energy route is expected to enhance the heat transfer from Jupiter’s hot interior to its troposphere and may also be relevant to the Earth’s atmosphere, helping us better understand the dynamics of our own planet.


Author(s):  
Hiya Mondal ◽  
Alaka Das

Abstract We have constructed an energy-conserving sixteen mode dynamical system to model hexagonal pattern in Rayleigh-Bénard convection of Boussinesq fluids with symmetric stress-free thermally conducting boundaries. The model shows stable roll pattern at the onset of convection. Hexagon is found to appear in the system via sausage and (or) stationary rhombus patterns. Both up and down hexagons arise periodically or chaotically with roll, sausage and rhombus patterns. Hexagonal patterns exist for all values of the Prandtl number, 1 ≤ Pr ≤ 5 explored here. However the pattern is more prominent for small Pr and k < kc , where k denotes the wave number. The plot of Nusselt number matches with previous theoretical result. In dissipationless limit, the total energy and the unavailable energy are constants though the kinetic energy, the potential energy and the available energy vary with time. The derived model does not diverge for large values of Rayleigh number Ra.


2021 ◽  
Vol 933 ◽  
Author(s):  
Baole Wen ◽  
David Goluskin ◽  
Charles R. Doering

The central open question about Rayleigh–Bénard convection – buoyancy-driven flow in a fluid layer heated from below and cooled from above – is how vertical heat flux depends on the imposed temperature gradient in the strongly nonlinear regime where the flows are typically turbulent. The quantitative challenge is to determine how the Nusselt number $Nu$ depends on the Rayleigh number $Ra$ in the $Ra\to \infty$ limit for fluids of fixed finite Prandtl number $Pr$ in fixed spatial domains. Laboratory experiments, numerical simulations and analysis of Rayleigh's mathematical model have yet to rule out either of the proposed ‘classical’ $Nu \sim Ra^{1/3}$ or ‘ultimate’ $Nu \sim Ra^{1/2}$ asymptotic scaling theories. Among the many solutions of the equations of motion at high $Ra$ are steady convection rolls that are dynamically unstable but share features of the turbulent attractor. We have computed these steady solutions for $Ra$ up to $10^{14}$ with $Pr=1$ and various horizontal periods. By choosing the horizontal period of these rolls at each $Ra$ to maximize $Nu$ , we find that steady convection rolls achieve classical asymptotic scaling. Moreover, they transport more heat than turbulent convection in experiments or simulations at comparable parameters. If heat transport in turbulent convection continues to be dominated by heat transport in steady rolls as $Ra\to \infty$ , it cannot achieve the ultimate scaling.


Sign in / Sign up

Export Citation Format

Share Document