stormwater control
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 54)

H-INDEX

19
(FIVE YEARS 5)

Author(s):  
Benjamin Choat ◽  
Amber Pulido ◽  
Aditi S. Bhaskar ◽  
Rebecca L. Hale ◽  
Harry X. Zhang ◽  
...  

Author(s):  
Xinhong Cai ◽  
Dawei Xu

The contradiction between rapid urbanization’s demand for land resources and the ecological environment is increasing, which has led to large-scale hardening of the underlying surface of the city and reduction of land for storage. In addition, construction land occupies rainwater confluence land, resulting in a significant decline in urban stormwater control capabilities. The increasingly frequent flood disasters in recent years have exposed the contradiction between urban construction and stormwater safety that cannot be ignored. Therefore, this article takes the central city of Harbin as the research object, uses ArcGIS for spatial analysis and SCS (Soil Conservation Service) hydrological model simulation to construct the rain and flood safety pattern in the research area, and proposes targeted optimization suggestions and strategies based on the evaluation results to achieve the purpose of coordinating the water ecosystem service function with social and economic development. The research shows that protecting the original stormwater corridor and strengthening the connection between the stormwater control patches can effectively guarantee the connectivity of the stormwater corridor, build the natural stormwater regulation and storage system, and then increase the ability of the city to resist the risk of rainstorm, reduce the disaster caused by urban waterlogging, and achieve the goal of sponge city construction.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 31
Author(s):  
Alisha Yee Chan ◽  
Honghyok Kim ◽  
Michelle L. Bell

Mosquito borne diseases are increasingly problematic as climate change continues to alter patterns of precipitation, flooding, and temperatures that may favor mosquito habitats. Stormwater control measures (SCMs), ecologically sustainable methods of stormwater management, may have varying impacts on Culex mosquitoes, such as in areas with combined sewer overflows (CSOs). We studied spatial and temporal associations of SCMs and Culex mosquito counts surrounding the SCMs, stratifying our examination amongst those that do/do not use pooling and/or vegetation, as well as surrounding CSO outfalls after heavy rainfall (≥95th percentile) during summer 2018. Results indicate Culex mosquito counts after heavy rainfall were not significantly different at SCMs that use vegetation and/or ponding from at those that do not. We also found a 35.5% reduction in the increase of Culex mosquitoes the day of, and 77.0% reduction 7–8 days after, heavy rainfall at CSO outfalls treated with medium SCM density compared to those without SCMs. Our results suggest that SCMs may be associated with a reduction in the increase of Culex mosquitoes at the CSO outfalls after heavy rainfall. More research is needed to study how the impacts of SCMs on mosquito populations may affect human health.


2021 ◽  
Author(s):  
Christopher John Walsh ◽  
Sam Imberger ◽  
Matthew J Burns ◽  
Darren G Bos ◽  
Tim D Fletcher

Traditional approaches to urban drainage degrade receiving waters. Alternative approaches have potential to protect downstream waters and provide other benefits to cities, including greater water security. Their widespread adoption requires robust demonstration of their feasibility and effectiveness. We conducted a catchment-scale, before-after-control-reference-impact experiment to assess the effect of dispersed stormwater control on stream ecosystems. We used a variant of effective imperviousness (EI), integrating catchment-scale stormwater runoff impact and stormwater-control-measure (SCM) performance, as the measure of experimental effect. We assessed the response of water quality variables in 6 sites on 2 streams, following SCM implementation in their catchments. We compared changes in those streams over 7 years, as SCM implementation increased, to the 12 preceding years, and over the 19 years in 3 reference and 2 control streams. SCMs reduced phosphorus and nitrogen concentrations and temperature, and increased electrical conductivity; with effect size negatively correlated with antecedent rain. SCM-induced reductions in phosphorus and temperature were of a similar magnitude to increases from urban development, when assessed as a function of change in EI. Nitrogen reductions were observed, even though concentrations among sites were not correlated with EI, being more influenced by septic tank seepage. SCMs had no effect on suspended solids concentrations, which were lower in urban streams than in reference streams. This experiment strengthens the inference that urban stormwater drainage increases contaminant concentrations in urban streams, and demonstrates that such impacts are reversible and likely preventable. SCMs reduce contaminant concentrations by reducing the frequency and magnitude of uncontrolled drainage flows and augmenting reduced baseflows. Increased EC and reduced temperature are likely a result of increased contribution of groundwater to baseflows. The stormwater control achieved by the experiment did not fully return phosphorus or nitrogen concentrations to reference levels, but their responses indicate such an outcome is possible in dominant conditions (up to ~20 mm of 24-h antecedent rain). This would require nearly all impervious surfaces draining to SCMs with large retention capacity, thus requiring more downslope space and water demand. EI predicts stream water quality responses to SCMs, allowing better catchment prioritization and SCM design standards for stream protection.


2021 ◽  
pp. 118008
Author(s):  
Vera S. Koutnik ◽  
Jamie Leonard ◽  
Joel B. Glasman ◽  
Jaslyn Brar ◽  
Hatice Ceylan Koydemir ◽  
...  

Author(s):  
Diego Marangoni Santos ◽  
Joel Avruch Goldenfum ◽  
Fernando Dornelles

Detention devices are often used as alternative measures for stormwater control. The Envelope Curve Method is widely used in Brazil to estimate detention device volumes. This method estimates the storage volume based on inlet and outlet balance, where the inlet is obtained by the Rational Method and the outlet by orifice bottom discharge. Usually, the outlet flow is adopted as a constant and equivalent to the maximum allowed, and this procedure can cause reservoir undersizing. This paper evaluates detention control measures’ hydraulic behavior for the Envelope Curve Method and proposes the inclusion of an outflow adjustment coefficient (Cout), seeking to compensate for the adoption of constant outlet flow simplification. Values for this coefficient were estimated for several Brazilian state capitals, ranging from 0.62 up to 0.65. The undersizing hypothesis due to the adoption of constant outlet flow was confirmed, as the simulations showed the need for an increase between 8.4% to 16.8% in the device size. This undersizing may be compensated for by applying the outflow adjustment coefficient (Cout). Keywords: adjustment coefficient, detention facilities, envelope curve, hydrologic design outflow adjustment coefficient.


2021 ◽  
Author(s):  
Christopher John Walsh ◽  
Matthew J Burns ◽  
Tim D Fletcher ◽  
Darren G Bos ◽  
Peter Poelsma ◽  
...  

Stormwater control measures, such as raingardens, tanks, or wetlands, are often employed to mitigate the deleterious effects of urban stormwater drainage on stream ecosystems. However, performance metrics for control measures, most commonly pollutant-load reduction, have not permitted prediction of how they will change stream ecosystems downstream. Stream ecosystem responses have more commonly been predicted by catchment-scale measures such as effective imperviousness (percentage of catchment with impervious cover draining to sealed drains). We adapt effective imperviousness, weighting it by a performance metric for stormwater control measures aimed at stream protection, the stream stormwater impact metric. Weighted effective imperviousness can serve as a predictor of stream response to stormwater control. We demonstrate its application in a before-after-control-reference-impact experiment aiming to test if stream health is improved by dispersed stormwater control measures. Trends in weighted effective imperviousness showed wide variation in degree of stormwater control achieved in the six experimental sub-catchments, despite similar effort in implementing control measures across the sub-catchments. Greater reductions in weighted effective imperviousness (on a log-scale, on which stream response is predicted) per unit effort were observed in smaller catchments with lower starting effective imperviousness. While implementation of control measures was sufficient to expect a stream response in at least two of the experimental sub-catchments, we did not achieve the reduction in effective imperviousness that we were aiming for. Primary limitations to success were the lack of available space in these established suburbs, particularly for final control measures near pipe outlets into streams, and a lack of demand for harvested stormwater. The use of the continuous variable, weighted effective imperviousness, to measure impact on streams, and the protracted period of SCM implementation that varied among catchments, required a new approach to modelling “before-after-control-impact” experiments, which has potentially broader application.


Author(s):  
Alisha Yee Chan ◽  
Ji-Young Son ◽  
Michelle Lee Bell

Stormwater control measures (SCMs) (i.e., green infrastructure) are advantageous methods of stormwater management. However, studies suggest that urban greening may be associated with gentrification, displacing racially/ethnically minoritized groups due to increased housing costs and loss of feelings of belonging. We studied displacement of racially/ethnically minoritized groups after SCM installation in Washington, DC. We compared the change in percentage of persons in racial/ethnic groups at the Census block group level with varying levels of SCM installation (i.e., area-weighted SCM count at 300 m buffer). We stratified findings by SCM type, pre-installation income, and SCM size. DC installed a higher density of SCMs in areas with a higher percentage of Black and/or Hispanic/Latino residents. Nonetheless, findings suggest SCM installation is associated with displacement of Black residents. The percentage of residents who are Black decreased by 2.2% [95% Confidence Interval: 1.7, 2.7] and 4.1% [95% Confidence Interval: 3.4, 4.8] after low and high levels of SCM installation, respectively. In turn, the change in percentage of residents who are White increased with increasing levels of SCM installation. Compared to ecological studies on SCMs, studies about social impacts are scarce. This research intends to help optimize SCM installations so more residents can enjoy their health, economic, and ecological benefits.


Sign in / Sign up

Export Citation Format

Share Document