screw extruders
Recently Published Documents


TOTAL DOCUMENTS

430
(FIVE YEARS 46)

H-INDEX

36
(FIVE YEARS 3)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 384
Author(s):  
António Gaspar-Cunha ◽  
José A. Covas ◽  
Janusz Sikora

Given the global economic and societal importance of the polymer industry, the continuous search for improvements in the various processing techniques is of practical primordial importance. This review evaluates the application of optimization methodologies to the main polymer processing operations. The most important characteristics related to the usage of optimization techniques, such as the nature of the objective function, the type of optimization algorithm, the modelling approach used to evaluate the solutions, and the parameters to optimize, are discussed. The aim is to identify the most important features of an optimization system for polymer processing problems and define the best procedure for each particular practical situation. For this purpose, the state of the art of the optimization methodologies usually employed is first presented, followed by an extensive review of the literature dealing with the major processing techniques, the discussion being completed by considering both the characteristics identified and the available optimization methodologies. This first part of the review focuses on extrusion, namely single and twin-screw extruders, extrusion dies, and calibrators. It is concluded that there is a set of methodologies that can be confidently applied in polymer processing with a very good performance and without the need of demanding computation requirements.


2021 ◽  
Vol 36 (5) ◽  
pp. 529-544
Author(s):  
W. Roland ◽  
C. Marschik ◽  
M. Kommenda ◽  
A. Haghofer ◽  
S. Dorl ◽  
...  

Abstract The traditional approach to modeling the polymer melt flow in single-screw extruders is based on analytical and numerical analyses. Due to increasing computational power, data-driven modeling has grown significantly in popularity in recent years. In this study, we compared and evaluated databased modeling approaches (i. e., gradient-boosted trees, artificial neural networks, and symbolic regression models based on genetic programming) in terms of their ability to predict – within a hybrid modeling framework – the three-dimensional non-linear throughput-pressure relationship of metering channels in single-screw extruders. By applying the theory of similarity to the governing flow equations, we identified the characteristic dimensionless influencing parameters, which we then varied to create a large dataset covering a wide range of possible applications. For each single design point we conducted numerical simulations and obtained the dimensionless flow rate. The large dataset was divided into three independent sets for training, interpolation, and extrapolation, the first being used to generate and the remaining two to evaluate the models. Further, we added two features derived from expert knowledge to the models and analyzed their influence on predictive power. In addition to prediction accuracy and interpolation and extrapolation capabilities, we evaluated model complexity, interpretability, and time required to learn the models. This study provides a rigorous analysis of various data-based modeling approaches applied to simulation data in extrusion.


2021 ◽  
Vol 60 (34) ◽  
pp. 12449-12460
Author(s):  
Juan Carlos Morales-Huerta ◽  
Oscar Hernández-Meléndez ◽  
Martín Guillermo Hernández-Luna ◽  
Octavio Manero ◽  
Eduardo Bárzana ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1919
Author(s):  
Christian Marschik ◽  
Wolfgang Roland ◽  
Marius Dörner ◽  
Georg Steinbichler ◽  
Volker Schöppner

Many theoretical analyses of extrusion ignore the effect of the flight clearance when predicting the pumping capability of a screw. This might be reasonable for conventional extruder screws with “normal” clearances but leads to errors when more advanced screw designs are considered. We present new leakage-flow models that allow the effect of the flight clearance to be included in the analysis of melt-conveying zones. Rather than directly correcting the drag and pressure flows, we derived regression models to predict locally the shear-thinning flow through the flight clearance. Using a hybrid modeling approach that includes analytical, numerical, and data-based modeling techniques enabled us to construct fast and accurate regressions for calculating flow rate and dissipation rate in the leakage gap. Using the novel regression models in combination with network theory, the new approximations consider the effect of the flight clearance in the predictions of pumping capability, power consumption and temperature development without modifying the equations for the down-channel flow. Unlike other approaches, our method is not limited to any specific screw designs or processing conditions.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1540
Author(s):  
Philipp Thieleke ◽  
Christian Bonten

Regrind processing poses challenges for single-screw extruders due to the irregularly shaped particles. For grooved feed zones, the output is lessened by the reduction of bulk density in comparison to virgin material. Simultaneously, the melt temperature increases, reducing the extruder’s process window. Through experimental investigations on a test stand, a novel feed zone geometry (nominal diameter 35 mm) is developed. It aligns the regrind’s specific throughput with that of virgin material. The regrind processing window is essentially increased. As the solids conveying in the novel feed zone cannot be simulated with existing methods, numerical simulations using the discrete element method are performed. Since plastic deformation occurs in the novel feed zone geometry, a new hysteresis contact model is developed. In addition to spheres, the regrind and virgin particles are modeled as superquadrics to better approximate the irregular shape. The new contact model’s simulation results show excellent agreement with experimental compression tests. The throughput of the extruder simulations is considerably underestimated when using spheres to represent the real particles than when using irregularly shaped superquadrics. Corresponding advantages can be seen especially for virgin material.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 990
Author(s):  
Abdullah Demirci ◽  
Ismail Teke ◽  
Nickolas D. Polychronopoulos ◽  
John Vlachopoulos

It has been known in the industrial sector that in closely intermeshing counterrotating twin screw extruders, large separating forces develop in the calender gap, which push the screws towards the barrel wall. The result is significant wear in the region defined by 30°- and 60°-degree angles from the vertical. In the present investigation, pressures were measured around the barrel in extrusion of two rigid PVC resins in a laboratory extruder of 55 mm diameter and the forces on the screw core were determined. Numerical flow simulations were also carried out using the power-law viscosity parameters of the resins. From the experimental results, it was determined that the resultant forces are in the 30 degree angle direction, and from the computer simulations, the angle is between 18° and 25°. It is argued that the resultant force angle will be somewhat larger in large diameter extruders, due to the additional contribution of gravity.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 944
Author(s):  
Raffael Rathner ◽  
Davide Tranchida ◽  
Wolfgang Roland ◽  
Franz Ruemer ◽  
Klaus Buchmann ◽  
...  

Single-screw extruders are usually operated with the screw fully filled (flood-fed mode) and not partially filled (starve-fed mode). These modes result in completely different processing characteristics, and although starve-fed mode has been shown to have significant advantages, such as improved mixing and melting performance, it is rarely used, and experimental studies are scarce. Here, we present extensive experimental research into starve-fed extrusion at feeding rates as low as 25%. We compared various operating parameters (e.g., residence time, pressure build-up, and melting performance) at various feeding rates and screw speeds. The results show a first insight into the performance of starve-fed extruders compared to flood-fed extruders. We explored starve-fed extrusion of a polyethylene material which contains a Very High Molecular Weight Polyethylene fraction (VHMWPE). VHMWPE offers several advantages in terms of mechanical properties, but its high viscosity renders common continuous melt processes, such as compression molding, ram extrusion and sintering, ineffective. This work shows that operating single-screw extruders in extreme starve-fed mode significantly increases residence time, melt temperature, and improves melting and that-in combination—this results in significant elongation of VHMWPE particles.


2021 ◽  
Vol 63 (2) ◽  
pp. 143-150
Author(s):  
Torben Buttler ◽  
Jens Hamje ◽  
Rolf Reiter ◽  
Volker Wesling

Abstract During polymer extrusion there are a variety of situations in which the screwthread of the extrusion screw has an unlubricated metal-to-metal contact with the barrel wall. At the same time the screw coating is subjected to the highest loads. The combination of a secondary hardening cold work steel 1.2379 and a chromium nitride coating deposited by ARC-PVD, which is frequently used in polymer processing, is characterized and investigated. The characterization is done by metallographic examination, SEM and CLSM. The tests were performed on a pin-on-disk and a pin-roll test rig. Different roughness levels were tested on the pin-on-disk test, where massive differences in wear behavior were found. A hybrid surface structure is proposed to optimize the tribosystem. On the pin-on-disk test stand, rollers made of the same material pairing were tested. The test speed was varied to highlight differences and similarities between the tribological systems. A wear minimization of 50 % was achieved and the similarities between the tribological systems were highlighted. In addition, the investigations led to the development of a new model thesis which provides a reason for the development of stippling on the screw when processing polycarbonate.


Sign in / Sign up

Export Citation Format

Share Document