baby universes
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Leonardo Chiatti ◽  
Ignazio Licata

A theoretical description of quantum jumps at the level of elementary particles is proposed, based on a micro-cosmological interpretation of their de Broglie phase. The third quantization formalism proposed in current literature for the description of baby universes in quantum cosmology is used here to describe the breakdown of unitarity in the transition from the pre-jump to the post-jump wave function. The corpuscular aspect manifested by the particle in the micro-interaction that originates the jump is represented by a pair of evanescent "micro-universes", respectively pre- and post-jump, connected by a wormhole. The latter represents the actual implementation of the interaction that leads to the projection on the outgoing state; this interaction is always local, even when the selected outgoing state is entangled. Therefore, the decoherence which leads to the emergence of classicality is originated by the same fundamental interactions of the Standard Model involved in the unitary evolution of the wave function. The objective nature of the reduction process admits implications on the possibility of using the formalism in the cosmological context, which are briefly discussed.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Jordan Cotler ◽  
Kristan Jensen

Abstract We study Jackiw-Teitelboim gravity with positive cosmological constant as a model for de Sitter quantum gravity. We focus on the quantum mechanics of the model at past and future infinity. There is a Hilbert space of asymptotic states and an infinite-time evolution operator between the far past and far future. This evolution is not unitary, although we find that it acts unitarily on a subspace up to non-perturbative corrections. These corrections come from processes which involve changes in the spatial topology, including the nucleation of baby universes. There is significant evidence that this 1+1 dimensional model is dual to a 0+0 dimensional matrix integral in the double-scaled limit. So the bulk quantum mechanics, including the Hilbert space and approximately unitary evolution, emerge from a classical integral. We find that this emergence is a robust consequence of the level repulsion of eigenvalues along with the double scaling limit, and so is rather universal in random matrix theory.


Author(s):  
Eduardo Casali ◽  
Donald M Marolf ◽  
Henry Maxfield ◽  
Mukund Rangamani

Abstract The quantum gravity path integral involves a sum over topologies that invites comparisons to worldsheet string theory and to Feynman diagrams of quantum field theory. However, the latter are naturally associated with the non-abelian algebra of quantum fields, while the former has been argued to define an abelian algebra of superselected observables associated with partition-function-like quantities at an asymptotic boundary. We resolve this apparent tension by pointing out a variety of discrete choices that must be made in constructing a Hilbert space from such path integrals, and arguing that the natural choices for quantum gravity differ from those used to construct QFTs. We focus on one-dimensional models of quantum gravity in order to make direct comparisons with worldline QFT.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Victor Godet ◽  
Charles Marteau

Abstract We study $$ \hat{\mathrm{CGHS}} $$ CGHS ̂ gravity, a variant of the matterless Callan-Giddings-Harvey-Strominger model. We show that it describes a universal sector of the near horizon perturbations of non-extremal black holes in higher dimensions. In many respects this theory can be viewed as a flat space analog of Jackiw-Teitelboim gravity. The result for the Euclidean path integral implies that $$ \hat{\mathrm{CGHS}} $$ CGHS ̂ is dual to a Gaussian ensemble that we describe in detail. The simplicity of this theory allows us to compute exact quantities such as the quenched free energy and provides a useful playground to study baby universes, averages and factorization. In particular we derive a “wormhole = diagonal” identity. We also give evidence for the existence of a non-perturbative completion in terms of a matrix model. Finally, flat wormhole solutions in this model are discussed.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Donald Marolf ◽  
Henry Maxfield

AbstractWe reformulate recent insights into black hole information in a manner emphasizing operationally-defined notions of entropy, Lorentz-signature descriptions, and asymptotically flat spacetimes. With the help of replica wormholes, we find that experiments of asymptotic observers are consistent with black holes as unitary quantum systems, with density of states given by the Bekenstein-Hawking formula. However, this comes at the cost of superselection sectors associated with the state of baby universes. Spacetimes studied by Polchinski and Strominger in 1994 provide a simple illustration of the associated concepts and techniques, and we argue them to be a natural late-time extrapolation of replica wormholes. The work aims to be self-contained and, in particular, to be accessible to readers who have not yet mastered earlier formulations of the ideas above.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Steven B. Giddings ◽  
Gustavo J. Turiaci

Abstract We investigate contributions of spacetime wormholes, describing baby universe emission and absorption, to calculations of entropies and correlation functions, for example those based on the replica method. We find that the rules of the “wormhole calculus”, developed in the 1980s, together with standard quantum mechanical prescriptions for computing entropies and correlators, imply definite rules for limited patterns of connection between replica factors in simple calculations. These results stand in contrast with assumptions that all topologies connecting replicas should be summed over, and call into question the explanation for the latter. In a “free” approximation baby universes introduce probability distributions for coupling constants, and we review and extend arguments that successive experiments in a “parent” universe increasingly precisely fix such couplings, resulting in ultimately pure evolution. Once this has happened, the nontrivial question remains of how topology-changing effects can modify the standard description of black hole information loss.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Vijay Balasubramanian ◽  
Arjun Kar ◽  
Simon F. Ross ◽  
Tomonori Ugajin

Abstract We extend a 2d topological model of the gravitational path integral to include sums over spin structure, corresponding to Neveu-Schwarz (NS) or Ramond (R) boundary conditions for fermions. This path integral corresponds to a correlator of boundary creation operators on a non-trivial baby universe Hilbert space, and vanishes when the number of R boundaries is odd. This vanishing implies a non-factorization of the correlator, which necessitates a dual interpretation of the bulk path integral in terms of a product of partition functions (associated to NS boundaries) and Witten indices (associated to R boundaries), averaged over an ensemble of theories with varying Hilbert space dimension and different numbers of bosonic and fermionic states. We also consider a model with End-of-the-World (EOW) branes, for which the dual ensemble then includes a sum over randomly chosen fermionic and bosonic states. We propose two modifications of the bulk path integral which restore an interpretation in a single dual theory: (i) a geometric prescription where we add extra boundaries with a sum over their spin structures, and (ii) an algebraic prescription involving “spacetime D-branes”. We extend our ideas to Jackiw-Teitelboim gravity, and propose a dual description of a single unitary theory with spin structure in a system with eigenbranes.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 975
Author(s):  
Irina Aref’eva ◽  
Igor Volovich

It has been shown recently by Saad, Shenker and Stanford that the genus expansion of a certain matrix integral generates partition functions of Jackiw-Teitelboim (JT) quantum gravity on Riemann surfaces of arbitrary genus with any fixed number of boundaries. We use an extension of this integral for studying gas of baby universes or wormholes in JT gravity. To investigate the gas nonperturbatively we explore the generating functional of baby universes in the matrix model. The simple particular case when the matrix integral includes the exponential potential is discussed in some detail. We argue that there is a phase transition in the gas of baby universes.


Sign in / Sign up

Export Citation Format

Share Document