modal dynamics
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 20)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
pp. 453
Author(s):  
Cheng-Lin Wu ◽  
Hsun-Ping Hsieh ◽  
Jiawei Jiang ◽  
Yi-Chieh Yang ◽  
Chris Shei ◽  
...  

To alleviate the impact of fake news on our society, predicting the popularity of fake news posts on social media is a crucial problem worthy of study. However, most related studies on fake news emphasize detection only. In this paper, we focus on the issue of fake news influence prediction, i.e., inferring how popular a fake news post might become on social platforms. To achieve our goal, we propose a comprehensive framework, MUFFLE, which captures multi-modal dynamics by encoding the representation of news-related social networks, user characteristics, and content in text. The attention mechanism developed in the model can provide explainability for social or psychological analysis. To examine the effectiveness of MUFFLE, we conducted extensive experiments on real-world datasets. The experimental results show that our proposed method outperforms both state-of-the-art methods of popularity prediction and machine-based baselines in top-k NDCG and hit rate. Through the experiments, we also analyze the feature importance for predicting fake news influence via the explainability provided by MUFFLE.


2021 ◽  
Vol 514 ◽  
pp. 116431
Author(s):  
Mohammed K. Alkharisi ◽  
Paul R. Heyliger
Keyword(s):  

2021 ◽  
Vol 29 (20) ◽  
pp. 32682
Author(s):  
Weitao He ◽  
Ruihuan Wu ◽  
Weiyi Hong ◽  
Aiping Luo

2021 ◽  
Vol 925 ◽  
Author(s):  
Abel Faure-Beaulieu ◽  
Thomas Indlekofer ◽  
James R. Dawson ◽  
Nicolas Noiray

In jet engines and gas turbines, the annular shape of the combustion chamber allows the appearance of self-oscillating azimuthal thermoacoustic modes. We report experimental evidence of a new type of modal dynamics characterised by periodic switching of the spinning direction and develop a theoretical model that fully reproduces this phenomenon and explains the underlying mechanisms. It is shown that tiny asymmetries of the geometry, the mean temperature field, the thermoacoustic response of the flames or the acoustic impedance of the walls, present in any real systems, can induce these heteroclinic orbits. The model also explains experimental observations showing a statistically dominant spinning direction despite the absence of swirling flow, or pairs of preferred nodal line directions.


Author(s):  
Christopher Mark O'Neill ◽  
Yannick Schubert ◽  
Moritz Sieber ◽  
Robert Martinuzzi ◽  
Chris Morton

Vortex induced vibrations (VIV) of a circular cylinder have been investigated experimentally using a cyberphysical apparatus with m∗ = 8, ζ = 0.005, and Re = 4000. This study considers the application of proper orthogonal decomposition (POD) and spectral POD (SPOD) analysis to the wake dynamics of the low-mass-ratio VIV of a circular cylinder in the lower branch at U∗ = 7.5. SPOD has been previously shown to better separate frequency-centered modal dynamics, compared to POD. Coherent POD and SPOD modes were compared and the newly separated third SPOD mode pair was found to have a periodicity characteristic of vortex shedding and a peak in the temporal coefficient spectra at St = f D/U∞ = 0.2248. The literature has identified that the wake dynamics within the lower branch are synchronized to the cylinder motion; however the present study suggests that some hidden dynamics persist at the Strouhal frequency. Low order models based on the first eight POD and SPOD modes were compared, and it was found that the filtering operation in SPOD removes the uncorrelated stochastic energy component of the POD modes while producing a comparable representation of the coherent deterministic part of the wake dynamics. Using SPOD to separate the distinct frequency-centered dynamics into unique, interpretable mode pairs will simplify future efforts to develop sparse dynamical models of the flow.


2021 ◽  
Author(s):  
J. Kim ◽  
W. Gillman ◽  
T. John ◽  
S. Adhikari ◽  
D. Wu ◽  
...  

Abstract This paper analyzes the dynamics of unstable azimuthal thermoacoustic modes in a lean premixed combustor. Azimuthal modes can be decomposed into two counter rotating waves where they can either compete and potentially suppress one of them (spinning) or coexist (standing), depending on the operating conditions. This paper describes experimental results of the dynamical behaviors of these two waves. The experimental data were taken at different mass flow rates as well as different azimuthal fuel staging in a multi-nozzle can combustor. It is shown that at a low flow rate with uniform fuel distribution, the two waves have similar amplitudes, giving rise to a standing wave. However, the two amplitudes are slowly oscillating out of phase to each other, and the phase difference between the two waves also shows oscillatory behavior. For an intermediate flow rate, the dynamics show intermittency between standing and spinning waves, indicating that the system is bistable. In addition, the phase difference dramatically shifts when the mode switches between standing and spinning waves. For a high flow rate, the system stabilizes at a spinning wave most of the time. These experimental observations demonstrate that not only the amplitudes of two waves but also the phase difference plays an important role in the dynamics of azimuthal mode. For non-uniform azimuthal fuel staging, the modal dynamics exhibit only an oscillatory standing wave behavior regardless of the mass flow rate. Compared to the uniform fuel staging, however, the pressure magnitude is considerably reduced, which provides a potential strategy to mitigate and/or suppress the instabilities.


2021 ◽  
Vol 493 ◽  
pp. 115810
Author(s):  
Oliver Tierdad Filsoof ◽  
Morten Hartvig Hansen ◽  
Anders Yde ◽  
Peter Bøttcher ◽  
Xuping Zhang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document