dendritic complexity
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 41)

H-INDEX

26
(FIVE YEARS 2)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 244
Author(s):  
Lianwei Mu ◽  
Jiajia Cai ◽  
Boya Gu ◽  
Laikang Yu ◽  
Cui Li ◽  
...  

Alzheimer’s disease (AD) is characterized by deficits in learning and memory. A pathological feature of AD is the alterations in the number and size of synapses, axon length, dendritic complexity, and dendritic spine numbers in the hippocampus and prefrontal cortex. Treadmill exercise can enhance synaptic plasticity in mouse or rat models of stroke, ischemia, and dementia. The aim of this study was to examine the effects of treadmill exercise on learning and memory, and structural synaptic plasticity in 3×Tg-AD mice, a mouse model of AD. Here, we show that 12 weeks treadmill exercise beginning in three-month-old mice improves spatial working memory in six-month-old 3×Tg-AD mice, while non-exercise six-month-old 3×Tg-AD mice exhibited impaired spatial working memory. To investigate potential mechanisms for the treadmill exercise-induced improvement of spatial learning and memory, we examined structural synaptic plasticity in the hippocampus and prefrontal cortex of six-month-old 3×Tg-AD mice that had undergone 12 weeks of treadmill exercise. We found that treadmill exercise led to increases in synapse numbers, synaptic structural parameters, the expression of synaptophysin (Syn, a presynaptic marker), the axon length, dendritic complexity, and the number of dendritic spines in 3×Tg-AD mice and restored these parameters to similar levels of non-Tg control mice without treadmill exercise. In addition, treadmill exercise also improved these parameters in non-Tg control mice. Strengthening structural synaptic plasticity may represent a potential mechanism by which treadmill exercise prevents decline in spatial learning and memory and synapse loss in 3×Tg-AD mice.


2022 ◽  
Author(s):  
Sheryl E Arambula ◽  
Miguel Perez-Pouchoulen ◽  
Jaylyn Waddell ◽  
Andressa Rejani Ribeiro Leite ◽  
Emily L Graham ◽  
...  

Abstract Perinatal hypoxia-ischemia (HI) is a major health issue with no effective therapies beyond head cooling. Notably, male infants are at a greater risk for HI and exhibit more extreme deficits than females. Extensive clinical evidence indicates that perinatal HI impacts the developing cerebellum, yet this region has been largely ignored in preclinical models. Using a modified version of the Rice-Vannucci rat model for HI injury at postnatal day 10, we find reductions in dendritic complexity of Purkinje neurons in males one week later. Females exhibited modest but opposite effects, with slight increases in dendritic complexity, based on Sholl analysis. A custom-made NanoString panel for quantifying mRNAs associated with development, inflammation, and sex differences found almost no commonality in the response to HI in males versus females, with males up-regulating genes associated with microglia activity whereas females increased expression of a protective complement protein, but also of enzymes associated with endocannabinoids and prostaglandins. Both sexes exhibited a reduction in the GABA-synthetic enzymes, GAD-65 and GAD-67, after HI, suggesting increased excitotoxicity, but why males suffered more damage to the Purkinje neurons is unknown.


2021 ◽  
Author(s):  
Ismael Izquierdo-Villalba ◽  
Sere Mirra ◽  
Yasmina Manso ◽  
Antoni Parcerisas ◽  
Javier Rubio ◽  
...  

In neurons, mitochondrial dynamics and trafficking are essential to provide the energy required for neurotransmission and neuronal activity. Recent studies point to GPCR and G proteins as important regulators of mitochondrial dynamics and energy metabolism. Here we show that activation of Gαq negatively regulates mitochondrial dynamics and trafficking in neurons. Gαq interacts with the mitochondrial trafficking protein Alex3. By generating a CNS-specific armcx3 knock-out mouse line, we demonstrate that Alex3 is required for Gαq effects on mitochondrial dynamics and trafficking, and dendritic growth. Armcx3-deficient mice present decreased OXPHOS complex and ER stress response protein levels, which correlate with increased neuronal death, motor neuron and neuromuscular synaptic loss, and severe motor alterations. Finally, we show that Alex3 disassembles from the Miro1/Gαq complex upon calcium rise. These data uncover a novel Alex3/Gαq complex that regulates neuronal mitochondrial dynamics and neuronal death and allows the control of mitochondrial functions by GPCRs.


2021 ◽  
Author(s):  
Fang Zhou ◽  
Pearl Ebea ◽  
Ezra Mutai ◽  
Sonal Sukreet ◽  
Shya Navazesh ◽  
...  

Background: Human milk contains large amounts of exosomes (MEs) and their regulatory microRNA cargos, whereas infant formulas contain only trace amounts of MEs and microRNAs. Breastfeeding has been implicated in optimal brain development but experimental evidence linking ME intake with brain development is limited. Objectives: We assessed the transport of MEs across the blood-brain barrier (BBB) and ME accumulation in distinct regions of the brain in brain endothelial cells and suckling mice. We further assessed BME-dependent gene expression profiles and effects on the dendritic complexity of hippocampal granule cells and phenotypes of BME depletion in neonate, juvenile and adult mice. Methods: The transfer of MEs across the BBB was assessed by using bovine MEs labeled with FM4-64 or loaded with IRDye-labeled miR-34a in murine brain endothelial bEnd.3 cell monolayers and dual chamber systems, and in wild-type newborn pups fostered to exosome and cargo tracking (ECT) dams that express MEs endogenously labeled with a CD63-eGFP fusion protein for subsequent analysis by serial two-photon tomography and staining with anti-eGFP antibodies. Effects of MEs on gene expression and dendritic architecture of granule cells was analyzed in hippocampi from juvenile mice fed exosome and RNA-depleted (ERD) and exosome and RNA-sufficient (ERS) diets by using RNA-sequencing analysis and Golgi-Cox staining followed by integrated neuronal tracing and morphological analysis of neuronal dendrites, respectively. Spatial learning and severity of kainic acid-induced seizures were assessed in mice fed ERD and ERS diets. Results: bEnd.3 cells internalized MEs by using a saturable transport mechanism and secreted miR-34a across the basal membrane. MEs penetrated the entire brain in fostering experiments; major regions of accumulation included the hippocampus, cortex and cerebellum. Two hundred ninety-five genes were differentially expressed in hippocampi from male mice fed ERD and ERS diets; high-confidence gene networks included pathways implicated in axon guidance and calcium signaling. Only one gene was differentially expressed in females fed the experimental diets. Juvenile pups fed the ERD diet had reduced dendritic complexity of dentate granule cells in the hippocampus, scored nine-fold lower in the Barnes maze test of spatial learning and memory (P < 0.01), and the severity of seizures was 5-fold higher following kainic acid administration in adult mice fed the ERD diet compared to mice fed the ERS diet (P < 0.01). Conclusions: MEs cross the BBB and contribute toward optimal neuronal development, spatial learning and memory, and resistance to kainic acid-induced seizures in mice.


2021 ◽  
Vol 14 ◽  
Author(s):  
Akiko Tabuchi ◽  
Daisuke Ihara

Accumulating evidence suggests that the serum response factor (SRF) cofactor megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF) has critical roles in many physiological and pathological processes in various cell types. MKL/MRTF molecules comprise MKL1/MRTFA and MKL2/MRTFB, which possess actin-binding motifs at the N-terminus, and SRF-binding domains and a transcriptional activation domain (TAD) at the C-terminus. Several studies have reported that, in association with actin rearrangement, MKL/MRTF translocates from the cytoplasm to the nucleus, where it regulates SRF-mediated gene expression and controls cell motility. Therefore, it is important to elucidate the roles of MKL/MRTF in the nervous system with regard to its structural and functional regulation by extracellular stimuli. We demonstrated that MKL/MRTF is highly expressed in the brain, especially the synapses, and is involved in dendritic complexity and dendritic spine maturation. In addition to the positive regulation of dendritic complexity, we identified several MKL/MRTF isoforms that negatively regulate dendritic complexity in cortical neurons. We found that the MKL/MRTF isoforms were expressed differentially during brain development and the impacts of these isoforms on the immediate early genes including Arc/Arg3.1, were different. Here, we review the roles of MKL/MRTF in the nervous system, with a special focus on the MKL/MRTF-mediated fine-tuning of neuronal morphology and gene transcription. In the concluding remarks, we briefly discuss the future perspectives and the possible involvement of MKL/MRTF in neurological disorders such as schizophrenia and autism spectrum disorder.


2021 ◽  
Author(s):  
Christos M. Suriano ◽  
Jessica L. Verpeut ◽  
Neerav Kumar ◽  
Jie Ma ◽  
Caroline Jung ◽  
...  

Recombinant adeno-associated viruses (AAVs) allow rapid and efficient gene delivery in the nervous system. AAVs are widely used in research and are the basis of multiple FDA-approved gene therapies. Here, we find that the immune response to AAV's genome reduces dendritic complexity in mammalian cortex. Dendritic loss associated with AAV-mediated gene delivery occurs at experimentally-relevant titers, cannot be explained by responses to transgene expression or surgery, and is not restricted to a particular capsid serotype, encoded transgene, promoter, or production facility. AAV-associated dendritic loss is accompanied by a decrease in the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) and upregulation of immune molecules that can limit dendritic complexity and synaptic transmission. Blocking detection of unmethylated CpG-rich DNA via Toll-like receptor 9 (TLR9) protects dendritic complexity, suggesting that immunodetection of a core feature of the AAV genome triggers dendritic loss. These results reveal previously unsuspected impacts of AAV on neuronal structure and function and identify TLR9 inhibitors as important tools to improve the safety and efficacy of AAV-mediated gene delivery in the nervous system.


2021 ◽  
Author(s):  
Mayara C. Ribeiro ◽  
Jessica L. MacDonald

Rett syndrome (RTT) is an X-linked neurological disorder caused by mutations in the transcriptional regulator MECP2. Mecp2 loss-of-function leads to the disruption of many cellular pathways, including aberrant activation of the NF-κB pathway. Genetically attenuating the NF-κB pathway in Mecp2-null mice ameliorates hallmark phenotypes of RTT, including reduced dendritic complexity, raising the question of whether NF-κB pathway inhibitors could provide a therapeutic avenue for RTT. Vitamin D is a known inhibitor of NF-κB signaling; further, vitamin D deficiency is prevalent in RTT patients and male Mecp2-null mice. We previously demonstrated that vitamin D rescues the aberrant NF-κB activity and reduced neurite outgrowth of Mecp2-knockdown cortical neurons in vitro, and that dietary vitamin D supplementation rescues decreased dendritic complexity and soma size of neocortical projection neurons in both male hemizygous Mecp2-null and female heterozygous mice in vivo. Here, we have identified over 200 genes whose dysregulated expression in the Mecp2+/- cortex is modulated by dietary vitamin D. Genes normalized with vitamin D supplementation are involved in dendritic complexity, synapses, and neuronal projections, suggesting that the rescue of their expression could underpin the rescue of neuronal morphology. Further, motor and anxiety-like behavioral phenotypes in Mecp2+/- mice correlate with circulating vitamin D levels, and there is a disruption in the homeostasis of the vitamin D synthesis pathway in Mecp2+/- mice. Thus, our data indicate that vitamin D modulates RTT pathology and its supplementation could provide a simple and cost-effective partial therapeutic for RTT.


2021 ◽  
Vol 11 (7) ◽  
pp. 833
Author(s):  
Poornima D. E. Weerasinghe-Mudiyanselage ◽  
Mary Jasmin Ang ◽  
Mai Wada ◽  
Sung-Ho Kim ◽  
Taekyun Shin ◽  
...  

Among the animal models of Parkinson’s disease (PD), the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model has shown both dopaminergic (DA) damage and related motor control defects, as observed in patients with PD. Recent studies have suggested that the DA system interacts with the synaptic plasticity of the hippocampus in PD. However, little is known about how alterations in the hippocampal structural plasticity are affected by the DA damage in MPTP-lesioned models. In the present study, we investigated alterations in dendritic complexity and spine density in the mouse hippocampus following acute MPTP treatment (22 mg/kg, intraperitoneally, four times/day, 2-h intervals). We confirmed that acute MPTP treatment significantly decreased initial motor function and persistently reduced the number of tyrosine hydroxylase-positive DA neurons in the substantia nigra. Golgi staining showed that acute MPTP treatment significantly reduced the spine density of neuronal dendrites in the cornu ammonis 1 (CA1) apical/basal and dentate gyrus (DG) subregions of the mouse hippocampus at 8 and 16 days after treatment, although it did not affect dendritic complexity (e.g., number of crossing dendrites, total dendritic length, and branch points per neuron) in both CA1 and DG subregions at all time points after treatment. Therefore, the present study provides anatomical evidence that acute MPTP treatment affects synaptic structure in the hippocampus during the late phase after acute MPTP treatment in mice, independent of any changes in the dendritic arborization of hippocampal neurons. These findings offer data for the ability of the acute MPTP-lesioned mouse model to replicate the non-nigrostriatal lesions of clinical PD.


Sign in / Sign up

Export Citation Format

Share Document