landslide stabilization
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 10)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 1 (2) ◽  
pp. 13-16
Author(s):  
Gomasa Ramesh

Slope stabilization is the one of important fundamental aspect for preventing landslides. For a safer design of the structure, slope stabilization is very important. There are various studies conducted on slope stabilization and landslide mitigation. Geotechnical Engineers and Structural Engineers play an important role in analyzing and designing slope stabilization and landslide mitigation and prevention. This study is also helpful for the design of slopes. The study also helps for quick assessment of slopes. This paper also explained stabilization methods and techniques for slope. This study is also helpful in improving the shear strength of the slope of soil. This paper helps to understand basic knowledge on slope stabilization and landslides for every Engineer easily.


Author(s):  
Gomasa Ramesh ◽  

Slope stabilization is the one of important fundamental aspect for preventing landslides. For a safer design of the structure, slope stabilization is very important. There are various studies conducted on slope stabilization and landslide mitigation. Geotechnical Engineers and Structural Engineers play an important role in analyzing and designing slope stabilization and landslide mitigation and prevention. This study is also helpful for the design of slopes. The study also helps for quick assessment of slopes. This paper also explained stabilization methods and techniques for slope. This study is also helpful in improving the shear strength of the slope of soil. This paper helps to understand basic knowledge on slope stabilization and landslides for every Engineer easily.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xueling Liu ◽  
Jinkai Yan ◽  
Bin Tong ◽  
Lei Liu

In this study, a large-scale model test was performed to investigate the effect of the single-row and double-row micropiles on the landside stabilization. For two different testing configuration settings, the bending moment along the micropiles, failure mode, and force condition were captured and compared. It is found that the landslide thrust on piles was distributed in a triangular shape. The piles in the front row carried greater pressure than the piles in the rear row. The resistance of the sliding body behind the pile was distributed in a parabolic shape, and mainly concentrated on the middle of the pile. The piles were destroyed due to the combined shearing and bending impact applied near the slipping surface. The boundary of the failure zone was from the position of two times the pile diameter under the slipping surface to the position of two and a half times the pile diameter above the slipping surface. Under the action of the landslide, each row of piles deformed at the same time. The capability of landslide stabilization for double-row piles was better than that of a single-row pile. The sections of the pile above slide surface were mainly subjected to negative bending moments and were distributed mainly within the pile length range of one-third of the anti-sliding section above the sliding surface. The pile body of the embedded section located in the range of ten times the pile diameter below the sliding surface was subjected to a positive bending moment.


Author(s):  
Amir Ahmadipur ◽  
Alexander McKenzie-Johnson ◽  
Ali Ebrahimi ◽  
Anthony H. Rice

Abstract This paper presents a case study of a landslide with the potential to affect four operating high-pressure natural gas pipelines located in the south-central US state of Mississippi. This case study follows a landslide hazard management process: beginning with landslide identification, through pipeline monitoring using strain gauges with an automated early alert system, to detection of landslide movement and its effects on the pipeline, completion of a geotechnical subsurface investigation, conceptual geotechnical mitigation planning, landslide stabilization design and construction, and stress relief excavation. Each step of the landslide hazard management process is described in this case study.


2020 ◽  
Vol 26 (4) ◽  
pp. 481-492
Author(s):  
Yang Yu ◽  
Xingmin Li ◽  
Xiaohua Pan ◽  
Qing Lü

ABSTRACT Stabilizing pile is a widely used method to reduce the development of large-scale landslides. Optimizing the pile geometry is a great challenge in the design of stabilizing piles with the purpose of cost-effectiveness, especially for soil strength parameters with large uncertainty. The objective of this study is to propose a robust and efficient method of designing piles for landslide stabilization with the consideration of the safety of slope, uncertainty of soil parameters, and cost of stabilizing piles. A new response surface, which incorporates soil parameters and stabilizing force into a quadratic polynomial function, is first proposed. Unknown coefficients of the quadratic polynomial function are solved with a numerical method at typical sampling points. Based on the solved quadratic polynomial function, the mean and standard deviation of factor of safety (FOS) of the pile-stabilized slope as well as the signal-to-noise factor are then calculated in order to evaluate the design robustness. A framework based on the concept of robust geotechnical design is presented, and its feasibility is illustrated by two cases of soil slopes. The results indicate that the proposed robust geotechnical design method could be used to optimize the design of landslide-stabilizing piles.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jian Wang ◽  
Wei Zhang ◽  
Chao-yang Xie ◽  
Qian Xiao ◽  
Yu-chen Zhu ◽  
...  

Precisely forecasting the disastrous characteristics of landslides can address the optimized preliminary design of the highway landslide stabilization. In this paper, taking the surcharge-induced landslides as an example, we developed the models of the material point method (MPM), a novel meshless numerical method, to calculate the large deformation of the highway landslides, with the affordable computing power. After convincing verification of the MPM model to simulate a surcharge-induced soil landslide, 32 typical postfailure scenarios were analyzed to obtain the highway landslide run-out processes and disastrous characteristics, such as the sliding distance and speed of the leading edge and sliding body morphology. Moreover, linear regression equations of the maximal sliding distance and speed were deduced after verification, to forecast the reasonable avoiding distance. The maximal sliding distance and speed were found to be negatively linearly correlated with the internal frictional angle and cohesion of the soil, and positively linearly correlated with the surcharge and the slope angle, respectively. Optimized preliminary design, of the highways in the mountainous and hilly areas, can be performed based on those insights.


Sign in / Sign up

Export Citation Format

Share Document