sister chromatid recombination
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 7)

H-INDEX

17
(FIVE YEARS 2)

2020 ◽  
Vol 10 (11) ◽  
pp. 3929-3947
Author(s):  
Nick St. John ◽  
Julian Freedland ◽  
Henri Baldino ◽  
Francis Doyle ◽  
Cinzia Cera ◽  
...  

Exposure to the mycotoxin aflatoxin B1 (AFB1) strongly correlates with hepatocellular carcinoma (HCC). P450 enzymes convert AFB1 into a highly reactive epoxide that forms unstable 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N7-Gua) DNA adducts, which convert to stable mutagenic AFB1 formamidopyrimidine (FAPY) DNA adducts. In CYP1A2-expressing budding yeast, AFB1 is a weak mutagen but a potent recombinagen. However, few genes have been identified that confer AFB1 resistance. Here, we profiled the yeast genome for AFB1 resistance. We introduced the human CYP1A2 into ∼90% of the diploid deletion library, and pooled samples from CYP1A2-expressing libraries and the original library were exposed to 50 μM AFB1 for 20 hs. By using next generation sequencing (NGS) to count molecular barcodes, we initially identified 86 genes from the CYP1A2-expressing libraries, of which 79 were confirmed to confer AFB1 resistance. While functionally diverse genes, including those that function in proteolysis, actin reorganization, and tRNA modification, were identified, those that function in postreplication DNA repair and encode proteins that bind to DNA damage were over-represented, compared to the yeast genome, at large. DNA metabolism genes also included those functioning in checkpoint recovery and replication fork maintenance, emphasizing the potency of the mycotoxin to trigger replication stress. Among genes involved in postreplication repair, we observed that CSM2, a member of the CSM2(SHU) complex, functioned in AFB1-associated sister chromatid recombination while suppressing AFB1-associated mutations. These studies thus broaden the number of AFB1 resistance genes and have elucidated a mechanism of error-free bypass of AFB1-associated DNA adducts.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yuan Yao ◽  
Xiaojing Li ◽  
Wanli Chen ◽  
Hui Liu ◽  
Limin Mi ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Paula Aguilera ◽  
Jenna Whalen ◽  
Christopher Minguet ◽  
Dmitri Churikov ◽  
Catherine Freudenreich ◽  
...  

AbstractThe Nuclear Pore Complex (NPC) has emerged as an important hub for processing various types of DNA damage. Here, we uncover that fusing a DNA binding domain to the NPC basket protein Nup1 reduces telomere relocalization to nuclear pores early after telomerase inactivation. This Nup1 modification also impairs the relocalization to the NPC of expanded CAG/CTG triplet repeats. Strikingly, telomerase negative cells bypass senescence when expressing this Nup1 modification by maintaining a minimal telomere length compatible with proliferation through rampant unequal exchanges between sister chromatids. We further report that a Nup1 mutant lacking 36 C-terminal residues recapitulates the phenotypes of the Nup1-LexA fusion indicating a direct role of Nup1 in the relocation of stalled forks to NPCs and restriction of error-prone recombination between repeated sequences. Our results reveal a new mode of telomere maintenance that could shed light on how 20% of cancer cells are maintained without telomerase or ALT.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Nealia CM House ◽  
Erica J Polleys ◽  
Ishtiaque Quasem ◽  
Marjorie De la Rosa Mejia ◽  
Cailin E Joyce ◽  
...  

CAG/CTG trinuncleotide repeats are fragile sequences that when expanded form DNA secondary structures and cause human disease. We evaluated CAG/CTG repeat stability and repair outcomes in histone H2 mutants in S. cerevisiae. Although the two copies of H2A are nearly identical in amino acid sequence, CAG repeat stability depends on H2A copy 1 (H2A.1) but not copy 2 (H2A.2). H2A.1 promotes high-fidelity homologous recombination, sister chromatid recombination (SCR), and break-induced replication whereas H2A.2 does not share these functions. Both decreased SCR and the increase in CAG expansions were due to the unique Thr126 residue in H2A.1 and hta1Δ or hta1-T126A mutants were epistatic to deletion of the Polδ subunit Pol32, suggesting a role for H2A.1 in D-loop extension. We conclude that H2A.1 plays a greater repair-specific role compared to H2A.2 and may be a first step towards evolution of a repair-specific function for H2AX compared to H2A in mammalian cells.


2019 ◽  
Author(s):  
Edwige B. Garcin ◽  
Stéphanie Gon ◽  
Rohit Prakash ◽  
Meghan R. Sullivan ◽  
Gregory J. Brunette ◽  
...  

ABSTRACTDeficiency in several of the classical human RAD51 paralogs [RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3] is associated with cancer predisposition and Fanconi anemia. To investigate their functions, isogenic disruption mutants for each were generated in non-transformed MCF10A mammary epithelial cells and in transformed U2OS and HEK293 cells. In U2OS and HEK293 cells, viable ablated clones were readily isolated for each RAD51 paralog; in contrast, with the exception of RAD51B, RAD51 paralogs are cell-essential in MCF10A cells. Underlining their importance for genomic stability, mutant cell lines display variable growth defects, impaired sister chromatid recombination, reduced levels of stable RAD51 nuclear foci, and hypersensitivity to mitomycin C and olaparib. Altogether these observations underscore the contributions of RAD51 paralogs in diverse DNA repair processes, and demonstrate essential differences in different cell types. Finally, this study will provide useful reagents to analyze patient-derived mutations and to investigate mechanisms of chemotherapeutic resistance deployed by cancers.


2018 ◽  
Author(s):  
Nealia C.M. House ◽  
Erica J. Polleys ◽  
Ishtiaque Quasem ◽  
Cailin E. Joyce ◽  
Oliver Takacsi-Nagy ◽  
...  

AbstractDNA are sites of genomic instability. Long CAG/CTG repeats form hairpin structures, are fragile, and can expand during DNA repair. The chromatin response to DNA damage can influence repair fidelity, but the knowledge of chromatin modifications involved in maintaining repair fidelity within repetitive DNA is limited. In a screen for CAG repeat fragility in Saccharomyces cerevisiae, histone 2A copy 1 (H2A.1) was identified to protect the repeat from increased rates of breakage. To address the role of H2A in CAG repeat instability, we tested the effect of deleting each histone H2 subytpe. Whereas deletion of HTA2, HTZ1, HTB1, and HTB2 did not significantly affect CAG repeat maintenance, deletion of HTA1 resulted in increased expansion frequency. Notably, mutation of threonine 126, unique to H2A.1, to a non-phosphorylatable alanine increased CAG repeat instability to a similar level as the hta1Δ mutant. CAG instability in the absence of HTA1 or mutation to hta1-T126A was dependent on the presence of the homologous recombination (HR) repair proteins Rad51, Rad52, and Rad57, and the Polδ subunit Pol32. In addition, sister chromatid recombination (SCR) was suppressed in the hta1Δ and hta1-T126A mutants and this suppression was epistatic to pol32Δ. Finally, break-induced replication (BIR) is impaired in the hta1Δ mutant, resulting in an altered repair profile. These data reveal differential roles for the H2A subtypes in DNA repair and implicate a new role for H2A.1 threonine-126 phosphorylation in mediating fidelity during HR repair and promoting SCR. Using a fragile, repetive DNA element to model endogenous DNA damage, our results demonstrate that H2A.1 plays a greater role than H2A.2 in promoting homology-dependent repair, suggesting H2A.1 is the true homolog of mammalian H2AX, whereas H2A.2 is functionally equivalent to mammalian H2A.Author SummaryCAG/CTG trinuncleotide repeats are fragile sequences that when expanded can cause human disease. To evaluate the role of S. cerevisiae histone H2A copies in DNA repair, we have measured instability of an expanded CAG/CTG repeat tract and repair outcomes in H2A mutants. Although the two copies of H2A are nearly identical in amino acid sequence, we found that the CAG repeat is more unstable in the absence of H2A copy 1 (H2A.1) than H2A copy 2, and that this role appears to be partially dependent on a phosphorylatable threonine at residue 126 in the C-terminal tail of H2A.1. Further, we show through a series of genetic assays that H2A.1 plays a role in promoting homologous recombination events, including sister chromatid recombination and break-induced replication. Our results uncover a role for H2A.1 in mediating fidelity of repair within repetitive DNA, and demonstrate that modification of its unique Thr126 residue plays a role in regulating SCR. Given the dependence of HR repair on H2A.1 but not H2A.2, we conclude that H2A.1 plays a greater repair-specific role in the cell and therefore would be the true homolog of mammalian H2AX.


2018 ◽  
Vol 154 (2) ◽  
pp. 107-118 ◽  
Author(s):  
Janay A. Santos-Serejo ◽  
José R. Gardingo ◽  
Mateus Mondin ◽  
Margarida L.R. Aguiar-Perecin

The meiotic and mitotic behavior of regenerated plants derived from a long-term callus culture, designated 12-F, was analyzed. This culture was heterozygous for an amplification of the heterochromatic knob on the long arm of chromosome 7 (K7L). We aimed to investigate if the amplification resulted from a breakage-fusion-bridge (BFB) cycle or from unequal sister chromatid recombination. Therefore, C-banded mitotic metaphases and pachytene, diakinesis, and anaphase I of regenerated plants were analyzed. Additionally, the occurrence of alterations in K7L was investigated in C-banded metaphases from short-term callus cultures derived from lines related to the donor genotype of the 12-F culture. As a result, plants homozygous and heterozygous for the amplification were detected. Meiosis was normal with few abnormalities, such as a low frequency of univalents at diakinesis. In the callus cultures a chromosome 7 with knobs of different sizes in the sister chromatids was detected and interpreted as a result of unequal crossing over. Other chromosomal alterations were consistent with the occurrence of BFB cycles. The finding of unequal crossing over in the cultures supports the conclusion that the amplification in the culture 12-F would be derived from this mechanism. If the amplification was derived from a BFB cycle, the terminal euchromatic segment between knob and the telomere would be deleted, and possibly, homozygous plants would not be viable.


2017 ◽  
Author(s):  
Arancha Sanchez ◽  
Mariana C. Gadaleta ◽  
Oliver Limbo ◽  
Paul Russell

ABSTRACTThe DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) protects genome integrity by restoring ligatable 5’-phosphate and 3’-hydroxyl termini at single-strand breaks (SSBs). In humans, PNKP mutations underlie the neurological disease known as MCSZ, but these individuals are not predisposed for cancer, implying effective alternative repair pathways in dividing cells. Homology-directed repair (HDR) of collapsed replication forks was proposed to repair SSBs in PNKP-deficient cells, but the critical HDR protein Rad51 is not required in PNKP-null (pnk1Δ) cells of Schizosaccharomyces pombe. Here, we report that pnk1Δ cells have enhanced requirements for Rad3 (ATR/Mec1) and Chk1 checkpoint kinases, and the multi-BRCT domain protein Brc1 that binds phospho-histone H2A (γH2A) at damaged replication forks. The viability of pnk1Δ cells depends on Mre11 and Ctp1 (CtIP/Sae2) double-strand break (DSB) resection proteins, Rad52 DNA strand annealing protein, Mus81-Eme1 Holliday junction resolvase, and Rqh1 (BLM/WRN/Sgs1) DNA helicase. Eliminating Pnk1 strongly sensitizes mre11Δ pku80Δ cells to DNA damaging agents that collapse replication forks, indicating a requirement for Mre11-Rad50-Nbs1 (MRN) protein complex that cannot be efficiently replaced by Exo1 5’-3’ exonuclease. Coupled with increased sister chromatid recombination and Rad52 repair foci in pnk1Δ cells, these findings indicate that lingering SSBs in pnk1Δ cells trigger Rad51-independent homology-directed repair of collapsed replication forks.AUTHOR SUMMARYDNA is constantly damaged by normal cellular metabolism, for example production of reactive oxygen species, or from exposure to external DNA damaging sources, such as radiation from the sun or chemicals in the environment. These genotoxic agents create thousands of single-strand breaks/cell/day in the human body. An essential DNA repair protein known as polynucleotide kinase/phosphatase (PNKP) makes sure the single-strand breaks have 5’ phosphate and 3’ hydroxyl ends suitable for healing by DNA ligase. Mutations that reduce PNKP activity cause a devastating neurological disease but surprisingly not cancer, suggesting that other DNA repair mechanisms step into the breach in dividing PNKP-deficient cells. One popular candidate was homology-directed repair (HDR) of replication forks that collapse at single-strand breaks, but the crucial HDR protein Rad51 was found to be non-essential in PNKP-deficient cells of fission yeast. In this study, Sanchez and Russell revive the HDR model by showing that SSBs in PNKP-deficient cells are repaired by a variant HDR mechanism that bypasses the requirement for Rad51. Notably, Mus81 endonuclease that resolves sister chromatid recombination structures formed during HDR of collapsed replication forks was found to be essential in PNKP-deficient cells.


Sign in / Sign up

Export Citation Format

Share Document