filament network
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 25)

H-INDEX

45
(FIVE YEARS 5)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0252845
Author(s):  
Chelsea Garno ◽  
Zoe H. Irons ◽  
Courtney M. Gamache ◽  
Quenelle McKim ◽  
Gabriela Reyes ◽  
...  

The cytokinetic contractile ring (CR) was first described some 50 years ago, however our understanding of the assembly and structure of the animal cell CR remains incomplete. We recently reported that mature CRs in sea urchin embryos contain myosin II mini-filaments organized into aligned concatenated arrays, and that in early CRs myosin II formed discrete clusters that transformed into the linearized structure over time. The present study extends our previous work by addressing the hypothesis that these myosin II clusters also contain the crucial scaffolding proteins anillin and septin, known to help link actin, myosin II, RhoA, and the membrane during cytokinesis. Super-resolution imaging of cortices from dividing embryos indicates that within each cluster, anillin and septin2 occupy a centralized position relative to the myosin II mini-filaments. As CR formation progresses, the myosin II, septin and anillin containing clusters enlarge and coalesce into patchy and faintly linear patterns. Our super-resolution images provide the initial visualization of anillin and septin nanostructure within an animal cell CR, including evidence of a septin filament-like network. Furthermore, Latrunculin-treated embryos indicated that the localization of septin or anillin to the myosin II clusters in the early CR was not dependent on actin filaments. These results highlight the structural progression of the CR in sea urchin embryos from an array of clusters to a linearized purse string, the association of anillin and septin with this process, and provide the visualization of an apparent septin filament network with the CR structure of an animal cell.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fuying Chen ◽  
Lei Yao ◽  
Xue Zhang ◽  
Yan Gu ◽  
Hong Yu ◽  
...  

Epidermolysis bullosa simplex (EBS) is a blistering dermatosis that is mostly caused by dominant mutations in KRT5 and KRT14. In this study, we investigated one patient with localized recessive EBS caused by novel homozygous c.1474T > C mutations in KRT5. Biochemical experiments showed a mutation-induced alteration in the keratin 5 structure, intraepidermal blisters, and collapsed keratin intermediate filaments, but no quantitative change at the protein levels and interaction between keratin 5 and keratin 14. Moreover, we found that MAPK signaling was inhibited, while desmosomal protein desmoglein 1 (DSG1) was upregulated upon KRT5 mutation. Inhibition of EGFR phosphorylation upregulated DSG1 levels in an in vitro model. Collectively, our findings suggest that this mutation leads to localized recessive EBS and that keratin 5 is involved in maintaining DSG1 via activating MAPK signaling.


2021 ◽  
Author(s):  
Chelsea Garno ◽  
Zoe H. Irons ◽  
Courtney M. Gamache ◽  
Xufeng Wu ◽  
Charles B. Shuster ◽  
...  

The cytokinetic contractile ring (CR) was first described some 50 years ago, however our understanding of the assembly and structure of the animal cell CR remains incomplete. We recently reported that mature CRs in sea urchin embryos contain myosin II mini-filaments organized into aligned concatenated arrays, and that in early CRs myosin II formed discrete clusters that transformed into the linearized structure over time. The present study extends our previous work by addressing the hypothesis that these myosin II clusters also contain the crucial scaffolding proteins anillin and septin, known to help link actin, myosin II, RhoA, and the membrane during cytokinesis. Super-resolution imaging of cortices from dividing embryos indicates that within each cluster, anillin and septin2 occupy a centralized position relative to the myosin II mini-filaments. As CR formation progresses, the myosin II, septin and anillin containing clusters enlarge and coalesce into patchy and faintly linear patterns. Our super-resolution images provide the initial visualization of anillin and septin nanostructure within an animal cell CR, including evidence of a septin filament network. Furthermore, Latrunculin-treated embryos indicated that the localization of septin or anillin to the myosin II clusters in the early CR was not dependent on actin filaments. These results highlight the structural progression of the CR in sea urchin embryos from an array of clusters to a linearized purse string, the association of anillin and septin with this process, and provide, for the first time, the visualization of septin filament higher order structure in an animal cell CR.


2021 ◽  
Vol 17 (5) ◽  
pp. e1008784
Author(s):  
Daniel Ch. Haspinger ◽  
Sandra Klinge ◽  
Gerhard A. Holzapfel

The interior of a eukaryotic cell is a highly complex composite material which consists of water, structural scaffoldings, organelles, and various biomolecular solutes. All these components serve as obstacles that impede the motion of vesicles. Hence, it is hypothesized that any alteration of the cytoskeletal network may directly impact or even disrupt the vesicle transport. A disruption of the vesicle-mediate cell transport is thought to contribute to several severe diseases and disorders, such as diabetes, Parkinson’s and Alzheimer’s disease, emphasizing the clinical relevance. To address the outlined objective, a multiscale finite element model of the diffusive vesicle transport is proposed on the basis of the concept of homogenization, owed to the complexity of the cytoskeletal network. In order to study the microscopic effects of specific nanoscopic actin filament network alterations onto the vesicle transport, a parametrized three-dimensional geometrical model of the actin filament network was generated on the basis of experimentally observed filament densities and network geometries in an adenocarcinomic human alveolar basal epithelial cell. Numerical analyzes of the obtained effective diffusion properties within two-dimensional sampling domains of the whole cell model revealed that the computed homogenized diffusion coefficients can be predicted statistically accurate by a simple two-parameter power law as soon as the inaccessible area fraction, due to the obstacle geometries and the finite size of the vesicles, is known. This relationship, in turn, leads to a massive reduction in computation time and allows to study the impact of a variety of different cytoskeletal alterations onto the vesicle transport. Hence, the numerical simulations predicted a 35% increase in transport time due to a uniformly distributed four-fold increase of the total filament amount. On the other hand, a hypothetically reduced expression of filament cross-linking proteins led to sparser filament networks and, thus, a speed up of the vesicle transport.


2021 ◽  
Vol 35 (5) ◽  
Author(s):  
Daniel A. D. Flormann ◽  
Moritz Schu ◽  
Emmanuel Terriac ◽  
Divyendu Thalla ◽  
Lucina Kainka ◽  
...  

2021 ◽  
Author(s):  
Danielle Holz ◽  
Aaron R Hall ◽  
Eiji Usukura ◽  
Sawako Yamashiro ◽  
Naoki Watanabe ◽  
...  

Single molecule imaging has shown that part of actin disassembles within a few seconds after incorporation into the dendritic filament network in lamellipodia, suggestive of frequent destabilization near barbed ends. To investigate the mechanisms behind network remodeling, we created a stochastic model with polymerization, depolymerization, branching, capping, uncapping, severing, oligomer diffusion, annealing, and debranching. We find that filament severing, enhanced near barbed ends, can explain the single molecule actin lifetime distribution, if oligomer fragments reanneal to free ends with rate constants comparable to in vitro measurements. The same mechanism leads to actin networks consistent with measured filament, end, and branch concentrations. These networks undergo structural remodeling, leading to longer filaments away from the leading edge, at the +/- 35$^o$ orientation pattern. Imaging of actin speckle lifetimes at sub-second resolution verifies frequent disassembly of newly-assembled actin. We thus propose a unified mechanism that fits a diverse set of basic lamellipodia phenomenology.


Soft Matter ◽  
2021 ◽  
Author(s):  
Maximilian J. Grill ◽  
Jonathan Kernes ◽  
Valentin M. Slepukhin ◽  
Wolfgang A. Wall ◽  
Alex J. Levine

We consider the propagation of tension along specific filaments of a semiflexible filament network in response to the application of a point force using a combination of numerical simulations and analytic theory.


2020 ◽  
Vol 21 (21) ◽  
pp. 8219
Author(s):  
Richard A. Coch ◽  
Florian Geisler ◽  
Andrea Annibal ◽  
Adam Antebi ◽  
Rudolf E. Leube

The intestine is an organ essential to organismal nutrient absorption, metabolic control, barrier function and immunoprotection. The Caenorhabditis elegans intestine consists of 20 cells harboring a dense intermediate filament network positioned below the apical plasma membrane that forms a junction-anchored sheath around the intestinal lumen. This evolutionarily conserved arrangement provides mechanical and overall stress-protection, and it serves as an important model for deciphering the role of intestinal architecture in metazoan biology. We recently reported that the loss-of-function mutation of the intestinal intermediate filament organizer IFO-1 perturbs this architecture, leading to reduced body size and reproduction. Here, we demonstrate that the IFO-1 mutation dramatically affects cholesterol metabolism. Mutants showed an increased sensitivity to cholesterol depletion, reduced cholesterol uptake, and cholesterol transfer to the gonads, which is also observed in worms completely lacking an intermediate filament network. Accordingly, we found striking similarities to transcriptome and lipidome profiles of a nuclear hormone receptor (NHR)-8 mutant. NHR-8 is homologous to mammalian LXR (liver X receptor) that serves as a sterol sensor and transcriptional regulator of lipid metabolism. Remarkably, increasing exogenous cholesterol partially rescues the developmental retardation in IFO-1 mutants. Our results uncover a novel link of the intestinal intermediate filament cytoskeleton to cholesterol metabolism that contributes to compromised growth and reproduction.


Sign in / Sign up

Export Citation Format

Share Document